NASA TECHNICAL NOTE

NASA TN D-3953

(Code)

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY)

LOCAL HEAT-TRANSFER COEFFICIENTS
AND STATIC PRESSURES FOR CONDENSATION
OF HIGH-VELOCITY STEAM WITHIN A TUBE

by Jack H. Goodykoontz and Robert G. Dorsch Lewis Research Center Cleveland, Ohio

LOCAL HEAT-TRANSFER COEFFICIENTS AND STATIC PRESSURES FOR CONDENSATION OF HIGH-VELOCITY STEAM WITHIN A TUBE

By Jack H. Goodykoontz and Robert G. Dorsch

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

LOCAL HEAT-TRANSFER COEFFICIENTS AND STATIC PRESSURES FOR CONDENSATION OF HIGH-VELOCITY STEAM WITHIN A TUBE

by Jack H. Goodykoontz and Robert G. Dorsch Lewis Research Center

SUMMARY

Local heat-transfer and static-pressure data were obtained for steam condensing in vertical downflow inside a tube. A 0.293-inch-inside-diameter by 8-foot-long copper tube was used as the test condenser. Inlet vapor velocities ranged from approximately 300 to 1000 feet per second with complete condensing occurring in the test section. The condenser was cooled with water flowing countercurrently in an annulus around the condenser tube.

The local condensing heat-transfer coefficient is a function of the local vapor flow rate, and correlates with the product of local quality and the square of the test-fluid total mass velocity. In general, high values of the coefficient occurred at the inlet and decreased with length. The mean condensing heat-transfer coefficient varied from 3860 to 11 850 Btu per hour per square foot per ^OF over a test-fluid total mass velocity range from 64 900 to 336 000 pounds per hour per square foot.

Static-pressure changes in the two-phase region varied from a net increase of 1.32 pounds per square inch to a net decrease of 35.34 pounds per square inch. Axial static-pressure profiles were a function of the vapor flow rate and heat flux. Overall friction-pressure losses for the two-phase region were computed from measured static-pressure changes and correlated in terms of common pipe-friction parameters that included flow rate, total condensing length, and specific volume of the vapor at the condenser inlet.

INTRODUCTION

As part of an overall program at the Lewis Research Center concerned with Rankine-cycle space-power systems, an experimental study of condensing inside tubes was initiated. Water was selected as the working fluid for simplicity of apparatus and instrumentation. A wide range of inlet vapor velocities (50 to 1000 ft/sec) was desired in the study to provide a sufficient range of variables for data analysis and for compari-

son with theoretical results. Further, at high vapor velocities the Froude number (ratio of inertia to gravity forces) becomes large, and thus the flow patterns within the condenser should be similar to those in a zero-gravity space environment.

In the first phase of the study reported in reference 1, data were obtained at the lower end of the desired inlet vapor velocity range (65 to 232 ft/sec). Local heat-transfer coefficients were determined for steam flowing in vertical downflow within a 5/8-inch-inside-diameter stainless-steel tube. Because of the low inlet velocity, the pressure drop was negligible during these tests.

In the investigation reported herein condensing data were obtained with high inlet vapor velocities (300 to 1000 ft/sec). Both local heat-transfer and local static-pressure data were obtained for steam condensing inside a tube. The data were taken with the downstream vapor-liquid interface located within the condenser tube so that complete condensing occurred. With complete condensing, the overall friction-pressure drop for the condenser could be computed with reasonable accuracy from the measured pressure change.

The test condenser was a 0.293-inch-inside-diameter by 8-foot-long copper tube mounted vertically with vapor flowing downward. The condenser was cooled by water flowing upward (countercurrently) in an annulus around the tube. The range of variables employed was as follows (symbols are defined in appendix A):

Variable	Range		
Test-fluid flow rate, w _t , lb/hr	30. 5 to 158		
Inlet vapor pressure, P _i , psia	15.03 to 39.34		
Inlet vapor velocity, V _{vi} , ft/sec	313 to 1018		
Condensing length, L, ft	1.1 to 6.7		
Coolant flow rate, wk, lb/hr	405 to 2180		
Coolant temperature, t _k , ^o F			
Inlet	61 to 99		
Exit	94 to 206		
Inlet vapor qualities	Nominally 100 percent		

APPARATUS AND PROCEDURE

Description of Rig

A schematic drawing of the test facility is shown in figure 1. The test-fluid side of the facility was a once-through system using demineralized and deaerated water. The coolant loop used demineralized water that was continuously recirculated. Steam at 100 pounds per square inch gage was used as the heat source, and cooling-tower water

Figure 1. - Single-tube steam-condensing test facility.

Figure 2. - Single-tube condenser test section. (Dimensions are in inches.)

Figure 3. - Test-section instrumentation. (Dimensions are in inches.)

was used as the final heat sink. With the exception of the condenser, the entire facility was constructed of stainless steel. The equipment in the vapor system consisted of a pot boiler, superheater, condenser, condensate heat exchanger, condensate flow measuring station, and receiver tank. The boiler was equipped with a wire mesh screen and baffle separator to minimize liquid carryover. Coolant loop components included a variable-speed pump, flowmeter, heat exchanger, and expansion tank.

The single-tube test condenser (fig. 2) was a coaxial shell and tube heat exchanger mounted in a vertical position; vapor entered at the top and coolant flowed countercurrently in the annulus between the inner and outer tubes. The inner tube was a thick-wall copper pipe with a measured outside diameter of 0.541 inch, a measured inside diameter of 0.293 inch, and a total condensing length of 8 feet. The outer jacket was a copper tube with a 0.75-inch outside diameter and a 0.040-inch wall. The annular gap between the inner and outer tubes was 0.064 inch. The small gap induced high coolant velocities at low coolant mass flow rates. This combination provided a large coolant temperature change per unit length of annulus so that accurate local heat flux determinations could be made (appendix B). Thick-wall tubing was used for the condenser so that the junctions of the wall thermocouples could be deeply embedded. A bellows at the downstream end of the condenser allowed relative motion between the inner and outer tubes. Spacer pins in the annulus maintained concentricity.

The inner diameter of the inlet vapor line changed from 1.049 to 0.293 inch at a distance of 18.5 inches upstream of the condenser. A bell-shaped transition section accommodated the change in diameter. A stainless-steel ring with an inner diameter of 0.293 inch was placed at the inlet of the condenser (fig. 2) to reduce axial heat conduction in the thick-wall copper tube. The test section, as well as all vapor lines, was lagged with blanket insulation to minimize heat losses.

A condensate flow control valve was installed downstream of the condenser so the location of the vapor-liquid interface could be varied by throttling the condensate. A 0.5-inch-outside-diameter glass tube (fig. 1) was installed between the end of the condenser tube and the condensate throttle valve to allow visual observance of the interface when it was moving into or out of the condenser.

Instrumentation

The condenser was provided with instrumentation to measure vapor inlet temperature, condensate exit temperature, condenser tube-wall temperatures, coolant temperatures, vapor inlet pressure, static pressures inside the condenser at different axial positions, and condensate and coolant flow rates. Figure 3 and tables I and II show the

location of the temperature and pressure measuring stations with respect to the inlet of the condenser.

Temperatures were measured with iron-constantan thermocouples with the thermocouple wires insulated with magnesium oxide and swaged inside a 1/16-inch-outside-diameter stainless-steel tube. The vapor inlet temperature was measured upstream of the transition section in the 1.049-inch-inside-diameter tube, where dynamic effects of flowing vapor would be negligible. Condensate temperature was measured 6 inches downstream of the end of the condenser.

Condenser tube-wall temperatures were measured at 4-inch intervals in one longitudinal plane after an initial spacing of the first two thermocouples of 0.14 and 0.98 foot downstream of the condenser inlet (table II). The bare physical junction of the thermocouple was placed 0.034 inch from the inner surface of the condenser tube. A copper disk, with a hole through the center, was soldered to the end of the thermocouple sheath to aid in installation. The physical junction of the thermocouple was flush with the surface of the disk (fig. 3). The location of the measured temperature was arbitrarily taken as the location of the physical junction for reasons discussed in appendix B. The 1/16-inch-outside-diameter sheath of the thermocouple projected radially outward. A bellows between the probe and the outer jacket was used to accommodate relative motion between the inner and outer tubes.

This radial wall thermocouple installation was dictated by the 1/16-inch annular gap selected for the cooling passage in order to obtain accurate local heat flux data. Because of this small gap and the desirability of deeply embedding the thermocouple junction in the tube wall, it was not possible to run the sheathed leads axially or to wrap them around the tube. The radial installation employed had the disadvantage of providing a possible fin effect.

The magnitude of the fin effect of the cylindrical sheath on the measured wall temperatures was investigated analytically. (The lead wires were thermally insulated from the sheath.) The rate of withdrawal of heat from the tube wall by conduction through the stainless-steel sheath immersed in the coolant stream (ref. 2, pp. 25-29) was compared with the convective-heat-transfer rate for an equal surface area of the unmodified copper tube wall. The calculated ratio of the two heat removal rates was near unity for the range of test conditions employed. In view of this result and the fact that the thermocouple junction was embedded deeply in the copper wall, it was concluded that the fin effect did not have an important influence on the measured wall temperatures.

As an additional check on the magnitude of the fin effect, a wall temperature error analysis was made by using the method of reference 3. The method of reference 3 considers the thermocouple as a heat sink in a plate that is exposed to fluids on both sides at different temperatures. Equations are developed to give the temperature error as a function of the convective heat-transfer coefficients, thermal conductances of the plate

and thermocouple wires, and temperature differences between the plate and the fluid. Application of the technique of reference 3 indicated that the error in measured wall temperature would be less than 1.0° F. It was concluded, therefore, that any temperature error caused by fin effects on the thermocouples would be small in comparison with other sources of error.

Coolant temperatures (fig. 3) were measured in one axial plane at a spacing of 1 foot with the exception of the inlet and exit region. The exact axial location is shown in figure 3 and table I. The plane of the coolant thermocouples was displaced 90° from the plane of the condenser tube-wall thermocouples, and the junctions were located at the center of the annular gap.

Pressures were measured with mercury-filled U-tube manometers with a hydrostatic water leg on the condenser side and atmospheric pressure on the reference side. The connecting lines from the manometer to the pressure tap on the condenser consisted of transparent tubing so that visual observation would give assurance of an all-liquid hydrostatic head. Static pressures were measured at 16 axial positions from upstream of the transition section to the end of the condenser. The locations of the positions are shown in figure 3 and table I. The static pressure of the inlet vapor was measured at four positions upstream of the condenser. One static pressure tap was located in the 1.049-inch-inside-diameter tube upstream of the transition section. The other three were axially spaced in the small-bore connecting line between the transition section and the condenser.

Condensate flow rate was measured by using a modified weigh tank technique, which consisted of measuring the time required to fill a known volume. The temperature of the condensate was measured so that the flow rate could be evaluated in mass units. The measuring station consisted of a quick-shutoff valve positioned downstream of a 2-inch outside-diameter by 3-foot-long metal tube. The tube was equipped with a sight glass that allowed visual observation and timing of the motion of the liquid interface when the quick-shutoff valve was closed. It was assumed that the flow rate did not change when the quick-shutoff valve was closed, since neither the pressure in the condenser nor the pressure drop across the condensate flow control valve changed. The coolant flow rate was measured by a commercial turbine-type flowmeter.

Test Procedure

Initial startup of the facility consisted of elimination of noncondensibles from the system. The boiler was filled with demineralized water and isolated from the remaining part of the system, which was evacuated to a vacuum of 28 or 29 inches of mercury. Ten to fifteen percent (6 to 9 gal) of the original boiler inventory was then boiled off to the

atmosphere to rid the water of any dissolved or entrained gas. The air content of the water in the evaporator was reduced to an order of 2 parts per million, on a mass basis, as determined by a gas analyzer. The boiler was then opened to the system, and with the condensate flow control valve fully open, high-velocity vapor flowed through the system to the receiver tank and out the vacuum line to purge any residual air pockets. The vacuum line was then closed. The pressure level in the receiver varied between 26 and 29 inches of mercury vacuum, depending on the temperature of the condensate. For each run, however, the receiver-tank pressure was constant.

Establishment of test conditions consisted of setting a coolant flow rate and building steam pressure inside the coils of the boiler and throttling the outflow of the condensate so that the vapor-liquid interface was maintained in the condenser. An approximation of the interface location could be made by monitoring the condenser-wall temperatures, since a pronounced change in the slope of the axial-wall-temperature profile occurred in the vicinity of the interface. Early in the program, it was established that the vapor flow rate was independent of the liquid level in the boiler within certain limits. Obtaining a data point consisted in adjusting the outflow of the condensate with the flow control valve and monitoring a particular wall temperature until it gave an indication that the interface was near that position. The data were taken after the system pressures had become steady.

Stability Considerations

Precautions were taken to ensure that all heat-transfer and pressure data were taken with the system operating stably. In establishing test conditions, particular combinations of boiler-supply steam pressure, coolant flow rate, and condensate flow-control-valve settings were found to result in unstable condenser operation. With such combinations, pressure oscillations occurred. These conditions were avoided when the steady-state data were taken. Data were taken when the condenser either was free of pressure disturbances or had only small disturbances compared with the measured mean values.

Special instability survey runs were made in which unstable operating points were deliberately sought out. For these runs, the manometers at 0.98 and 1.98 feet from the condenser inlet were replaced with dynamic pressure pickups. The other manometers remained connected to duplicate steady-state operating conditions. The outputs of the pressure pickups were recorded by an oscillograph. Both amplitudes and frequencies of the condenser disturbances were determined from the oscillograph records for each unstable condition encountered. The frequencies of the observed condenser disturbances were 25 to 100 times the natural frequencies of the attached manometer systems.

The dynamic characteristics of the boiler were also checked during the stability survey. Of particular interest was the effect of system flow oscillations on boiler pressure. A high-temperature dynamic-pressure pickup was installed in the boiler above the level of the liquid to measure any pressure fluctuations occurring inside the boiler. In order to minimize condenser interactions, the system was operated during these tests with only partial condensing taking place in the test section. The rest of the condensing took place in the large heat exchanger normally used for subcooling.

Flow changes were imposed on the system by operating a throttle valve just upstream of the condenser test section. The usual procedure was to either close or partly close the valve and then a short time later to reopen the valve (to open full). This cycle was repeated over a wide range of repetition frequencies, including those observed in the condenser (1 to 10 cps) during unstable modes of operation.

The results of the condenser and boiler stability checks are summarized in the RESULTS AND DISCUSSION section.

DATA ANALYSIS

The experimental steady-state data obtained in the tests are shown in tables I and II. The wall temperatures in table I are values that were taken from a curve faired through the measured wall temperatures given in table II. The static pressures in table I downstream of the interface were corrected for the liquid hydrostatic head between the interface and the station at which the pressure was measured. Included in table I are computed values for overall friction-pressure loss, total condensing length, local condensing heat-transfer coefficient, mean condensing heat-transfer coefficient, vapor state at the inlet to the condenser, and overall heat-balance error.

The overall friction-pressure loss in the two-phase region was computed from the following equation, which describes the overall static-pressure change in the two-phase region of the condenser:

$$\Delta P_{s} = \Delta P_{f} + \Delta P_{m} + \Delta P_{G} \tag{1}$$

The static pressure at the interface needed to compute ΔP_s was obtained from a plot of pressure as a function of length. For total condensation, the overall momentum-pressure change ΔP_m was calculated from the following equation (derived in ref. 4):

$$\Delta P_{\rm m} = \frac{v_{\rm i}G_{\rm t}^2}{Kg_{\rm c}} \tag{2}$$

The term for the pressure change due to change in elevation, ΔP_G of equation (1), was negligibly small because of the presence of a large void fraction over a considerable portion of the two-phase region. All fluid properties were taken from reference 5.

Total condensing lengths were computed by a stepwise heat-balance analysis performed on the condenser. The total condensing length was taken as that distance from the entrance where the summation of the local condensing flow was equal to the total measured value of the condensate flow rate. The details of all heat-transfer calculations are given in appendix B.

The vapor state was determined at two locations upstream of the condenser. The first location was near the transition section in the 1-inch line (-1.75 ft). Pressure and temperature were measured at this point. The amount of superheat at this location was evaluated by comparing the measured temperature with the saturation temperature corresponding to the measured pressure. Some of the runs indicated saturation conditions at the transition section. The quality of the vapor for these conditions was evaluated in the following manner. The data that indicated superheat at the transition section were used to develop an empirical heat-loss correlation for the vapor line upstream of the transition section. The correlation gave the heat loss between the superheater and transition section as a function of the average vapor temperature. This correlation was used to determine the heat loss and to compute the vapor quality for the runs that indicated no superheat at the transition section. The minimum quality computed by this method was 0.99. The second location at which the vapor state was determined was 0.08 foot upstream of the condenser. The vapor state at this location was computed by assuming an isentropic process from the station at -1.75 feet. The minimum quality entering the condenser was computed to be 0.96.

Overall heat-balance errors were computed by taking the difference between the heat gained by the coolant and the total heat rejected by the test fluid and dividing by the heat gain of the coolant. Heat-balance errors thus evaluated gave the heat rejected by the test fluid as being up to 9.5 percent greater than and up to 7.0 percent less than the heat gained by the coolant.

RESULTS AND DISCUSSION

Axial Pressure and Temperature Profiles

Figure 4 illustrates typical examples of the variation of pressure and temperature with length for three sets of data. The three runs shown in the figure had nearly the same inlet conditions of pressure, quality, and test-fluid total flow rate and, therefore, the same total heat-rejection rate in the two-phase portion of the condenser. The con-

friction-pressure loss, 12.88 pounds per square inch; coolant flow rate, 530 pounds per hour (run 171).

friction-pressure loss, 6.0 pounds per square inch; coolant flow rate, 880 pounds per hour (run 172).

Figure 4. - Pressure and temperature distribution for same conditions of test-fluid flow rate and inlet pressure with different condensing

densing length varied, however, so that coolant flow had to be altered to maintain the energy balance between the heat source and the sink.

Figure 4(a) shows that a net static-pressure drop of 7.5 pounds per square inch was measured from zero length, where condensing started, to the interface position at 6.7 feet. The slope of the pressure profile was negative over most of the length and approached zero as the end of the condensing section was approached. The negative slope of the static-pressure profile indicates that the local friction-pressure gradient was larger than the local momentum-pressure gradient over a large portion of the condensing length.

The test-fluid temperature plotted in figure 4(a) at a length of -1.75 feet is a measured value, while the temperatures between zero length and the vapor-liquid inter-

(c) Condensing length, 2. 2 feet, test-fluid total flow rate, 67. 9 pounds per hour; test-fluid inlet velocity, 624 feet per second, friction-pressure loss, 4. 47 pounds per square inch; coolant flow rate, 1805 pounds per hour (run 228).

Figure 4. - Concluded.

face are saturation temperatures corresponding to the measured pressure. The condensate temperature, represented by the dashed curve downstream of the interface, was computed from heat balances in the subcooling region of the condenser and was subject to uncertainty because of the low heat flux in this area. The condensate temperature at a length of 8.5 feet was measured.

Figure 4(b) shows that, when the condensing length was reduced to 3.3 feet with the same condensing heat load as in figure 4(a), a much smaller overall static-pressure drop was obtained. The static-pressure profile shown in figure 4(b) indicates that the local momentum-pressure gradients and local friction-pressure gradients were nearly equal over the condensing length since the local static-pressure gradients were small.

The test-fluid temperature, shown in figure 4(b), was nearly constant over the condensing portion of the test section since the static pressure did not change appreciably. The condensate temperature at the exit end of the test section was 49° F cooler than for the conditions in figure 4(a) since a larger area was available for subcooling.

Figure 4(c) shows that further reduction in condensing length to 2.2 feet gave a net static-pressure rise of 1.0 pound per square inch from the condenser inlet to the interface. Also, on a local basis, the momentum-pressure gradients were larger than the friction-pressure gradients since the static-pressure gradients were positive over the entire length of the condensing section.

Changing the test-fluid total flow rate while maintaining the same condensing length affected the static-pressure distribution as shown in figure 5(a). Approximately the same static pressure existed at zero length for the two runs shown in the figure. For the lower flow rate run (run 173), the pressure profile was essentially uniform. For the higher flow (run 205) the slope of the static-pressure profile changed from a negative value at the condenser inlet to a positive value near the interface.

Figure 5. - Static pressure distribution for four conditions.

The effect of the change in the inlet pressure at the condenser entrance (L = 0) on the static-pressure distribution is shown in figure 5(b). The test-fluid flow and condensing lengths were approximately the same for the two runs. The shapes of the profiles for the two runs were similar. The log-mean temperature difference between the vapor and coolant for the runs shown in figure 5(b) was the same so that the same average heat flux existed for both runs. The lower pressure level of run 215 caused the vapor to have a higher specific volume in the two-phase region and, consequently, higher velocity at the same flow rate. The higher velocity flow generated larger shearing stresses and, therefore, a greater frictionpressure loss.

Overall Friction-Pressure Loss

Analysis of the data showed that the overall friction-pressure loss for the two-phase region could be correlated in terms of the same parameters that have conventionally been used for single-phase pipe-flow problems. The individual effect of each parameter (length, flow rate, and pressure) on overall friction-pressure loss is similar.

The effect of the variation in condensing length on the overall frictionpressure loss is shown in figure 6. The figure contains three groups of

Figure 6. - Overall friction-pressure loss as function of total condensing length at constant inlet conditions.

Figure 7. - Overall friction-pressure loss as function of test-fluid total flow rate.

Figure 8. - Friction-pressure loss.

(c) Overall friction-pressure loss as function of flow parameter for data from other sources.

Figure 8. - Concluded.

runs. Each group had approximately the same test-fluid flow rate and static pressures at the inlet of the test section. Figure 6 shows that the overall friction-pressure loss was directly proportional to condensing length.

Figure 7 shows the overall friction-pressure loss plotted as a function of the test-fluid total flow rate at approximately constant conditions of total condensing length and inlet pressure. The figure shows that the overall friction-pressure loss was proportional to the square of the total flow rate.

Since the effect of pressure level was reflected in the specific volume of the fluid, this fluid property, in addition to the flow rate and condensing length, was used to correlate the data, as shown in figure 8(a). The specific volume of the vapor was taken as the saturated value and was evaluated at the pressure existing at the condenser inlet. The length-diameter ratio in the flow parameter is the total condensing length divided by the inner diameter of the tube. The square of the test-fluid total mass velocity was used in the flow parameter. The data correlated to within ±21 percent of the curve and showed, approximately, a direct proportionality between the overall friction-pressure loss and the flow parameter.

The flow parameter of figure 8(a) is identical to the group of variables used in

ordinary single-phase pipe-friction problems. An overall friction factor can be obtained from the data of figure 8(a). The best-fit curve shown in the figure gives a constant friction factor of 0.0184.

A comparison of the experimental friction-pressure drop as a function of the flow parameter with that predicted from the Darcy-Weisbach equation (ref. 6) for turbulent, incompressible, isothermal, single-phase flow in a smooth tube is shown in figure 8(b). The friction factor was computed from the equation expressing the friction factor as a function of the Reynolds number to the -0.2 power. This relation was for turbulent flow in smooth tubes over a Reynolds number range from 5000 to 200 000 (ref. 7, p. 155).

At the low end of the flow parameter range, the Darcy-Weisbach relation showed a pressure drop greater than that measured for the condenser. At the high end of the range, the relation predicted a pressure drop less than that measured. The general agreement between the experimental friction-pressure drop and that predicted by the single-phase equation was probably caused by the fact that a large portion of the two-phase region had a large void fraction due, in part, to the large density ratio between the two phases at the pressures encountered in the tests.

Friction-pressure-loss data from other studies in which steam was used as a test fluid are plotted as a function of the flow parameter in figure 8(c). The 1.055 inchinside-diameter single-tube data were recently obtained at the University of Connecticut as part of a continuation of the study reported in reference 8. The data are for complete condensing in the tube. Reference 8 presented data for complete condensing in 0.550-and 0.193-inch inside-diameter tubes. Reference 9 reported overall static-pressure changes in a multitube condenser with individual tubes having an inside diameter of 0.242 inch. Data from reference 9 with inlet qualities greater than 70 percent were used for presentation in figure 8(c). The test condensers of references 8 and 9 were installed in a horizontal plane. Figure 8(c) shows that the overall friction-pressure loss for these inside tube condensers correlates satisfactorily with the flow parameter, regardless of test-section geometries and orientation.

Local Heat Flux

The axial heat-flux distributions obtained in the tests had a variety of shapes and a large range in the magnitude of local values of heat flux. Examples of axial heat-flux distributions are shown in figure 9(a). The heat flux distribution for run 225 was typical for a run with a net static-pressure rise from zero length to the downstream vapor-liquid interface. The run was characterized by a very high value of local heat flux near the vapor-inlet end of the condenser and a large axial heat-flux gradient. Local heat fluxes for run 240 were relatively high, but the slope of the heat-flux curve

Heat flux, q_i, Btu/(hr)(ft²)

Figure 9. - Variations in heat flux and heat-transfer coefficient for single-tube steam condenser.

(b) Heat-transfer coefficient.

was considerably less than that of run 225.

An example of uniform heat flux over most of the condensing portion of the test section was shown by run 164. The combination of operating conditions for this run was such that a constant condensing rate per unit length was obtained along with a corresponding linear increase in coolant temperature. The heat flux for run 171 increased with length and reached a maximum at the vaporliquid interface. This heat flux distribution was obtained from a coolant temperature profile that exhibited a slight concavity downward (fig. 4(a)). Run 171 illustrated a condition where the heat flux was proportional to the overall temperature difference between the vapor and the coolant.

Local Heat-Transfer Coefficients

Variation in heat flux was partly caused by the variation in local heat-transfer coefficients and partly by the overall temperature difference between vapor and coolant. The local condensing heat-transfer coefficients for the runs of figure 9(a) were plotted as a function of length and are shown in figure 9(b). The coefficients had a higher value at the condenser inlet and generally decreased in magnitude with length (exceptions are runs 175 and 191, table I).

Figure 10. - Local condensing heat-transfer coefficient as function of local vapor flow rate.

Analytical studies on high-velocity condensing inside tubes have indicated that the condensing heat-transfer coefficient should increase with increased values of interfacial shear between the vapor and the condensate film (refs. 10 to 12). Interfacial shear forces are proportional to the relative velocity between the vapor and the liquid and would require a knowledge of either the vapor or liquid velocity for analysis. These quantities cannot be determined from the data presented herein. Reference 1, however, presented the local condensing heat-transfer coefficient as a function of local vapor mass flow rate, and the results showed the coefficient was proportional to the vapor flow.

Figure 10 shows the data of the present work plotted in terms of the local condens-

Figure 11. - Local condensing heat-transfer coefficient as function of local vapor mass velocity.

ing coefficient as a function of the local vapor flow rate. Local vapor flow rates were computed from heat balances. Data are shown for local qualities greater than 10 percent, since, at very low qualities, the method used to calculate vapor flow rate from the experimental data becomes inaccurate (appendix B). Data from reference 1 are also plotted for comparison. The present data are considerably higher than those of references 1 and show a slightly different slope. The trend of increasing coefficient with increasing vapor flow is still evident, however.

Figure 11 is presented to compare the two sets of data in terms of local superficial vapor mass velocity, that is, mass velocity based on the inner diameter of the condenser tube. Figures 10 and 11 show that the convective nature of high-velocity vapor flow is an important consideration in condensing heat transfer. Reference 13 presented similar

Figure 12. - Local condensing heat-transfer coefficient as function of mass-velocity parameter.

results. Furthermore, the data of this report and of reference 1 show that the relation between the heat-transfer coefficient and the vapor flow rate is consistent over a large portion of the condensing region in an inside-tube condenser.

The vapor mass velocity of figure 11 is the product of the local quality and test-fluid total mass velocity. A correlation was tried between the local coefficient and the product of the local quality and the square of the test-fluid total mass velocity. The results are shown in figure 12 and indicate that over a large range a satisfactory correlation can be made between the local condensing coefficient and the mass velocity parameter.

Mean Heat-Transfer Coefficients

Mean condensing heat-transfer coefficients were computed from the local coefficients as described in appendix B. Figure 13 shows the mean coefficients plotted as a function of test-fluid total mass velocity. Also shown in the figure are data from reference 1 and complete condensing data for steam from reference 14. Figure 13 indicates an approximately linear relation between the mean coefficient and the total mass velocity. This relation is in agreement with the analytical work of Carpenter and Colburn (ref. 10), who considered the effect of vapor shear and fluid properties for high-velocity condensing. The data reported herein, however, are not presented in terms of the Carpenter-Colburn expression since the overall friction factor was almost constant, and the fluid

Figure 13. - Mean condensing heat-transfer coefficient as function of test-fluid total mass velocity.

properties did not vary appreciably over the temperature range encountered in these tests.

Pressure Oscillations

As discussed in the APPARATUS AND PROCEDURE section, the dynamic characteristics of the boiler were checked during the stability survey. Closing the throttle valve upstream of the condenser stopped (or reduced) the flow and caused the boiler pressure to rise. Opening the valve caused it to drop. The boiler would respond (with a phase lag) in the 1- to 10-cps range. At these frequencies, however, the magnitude of the change in boiler pressure was small even with the valve oscillating between the fully closed and fully opened condition. The peak-to-peak amplitudes of the pressure disturbances were always less than 1 pound per square inch. For example, with the boiler at 31 pounds per square inch absolute, the peak-to-peak amplitude for a 1-cps valve oscillation was 0.44 pound per square inch or about 1.4 percent of the boiler mean pressure. It was concluded from these tests that the boiler could provide essentially-constant-pressure vapor regardless of flow disturbances occurring elsewhere in the system.

The steady-state heat-transfer and pressure data were taken with the system operating stably. Under these conditions, the pressure variations in the condenser, if any, were less than ± 1.5 percent of the mean pressure. This condition was not the case, however, when the condenser was at an unstable operating point.

The instability survey data of table III show that large-amplitude pressure oscillations occurred when the condenser was unstable. In some cases (runs 8 and 12), the peak-to-peak amplitude of the disturbance was greater than 50 percent of the mean pressure at the vapor-liquid interface. The frequencies of the pressure oscillations ranged from 2.7 to 8.8 cps. The pressure oscillations occurred when the condensing lengths were between 1.7 and 3.7 feet. The axial static-pressure profiles (time averages) were, with one exception (run 1), very flat for the unstable runs. Flat pressure profiles are consistent with intermediate condensing lengths (1.7 to 3.7 ft). No unstable conditions were encountered during the survey at very short or at long condensing lengths. At the intermediate condensing lengths, the system operated either stably or unstably depending on the particular combination of condenser parameters existing at the operating point. At the present time, the cause of the condenser instability is unknown. Some of the parameters thought to be important in determining stability are included in the data summary of table III. However, no single controlling parameter or combination of parameters which could be used to predict stable operating points was found in the brief survev.

Examples of pressure-time traces taken from small portions of oscillograph traces

Figure 14. - Pressure-time traces for unstable runs.

for unstable runs 4, 5, 6, 8, 10, 12, and 14 of table III are shown in figure 14. The pressure traces are arranged in order of decreasing disturbance amplitude. The general shape of the nonlinear pressure oscillations tends toward narrow negative peaks and wide positive peaks. Further, pressure generally decreases at a slower rate than it rises. The large-amplitude disturbances also have indications of acoustic-type disturbances propagating up and down the vapor supply line. (Note ringing-type disturbance during positive part of cycle in fig. 14(a).) When the condenser instability is well developed, the disturbances become periodic. The period for each cycle is not fixed (or locked in), however, but varies somewhat from cycle to cycle as do the amplitudes. Further, examining the oscillograph traces over a much longer period of time than shown in figure 14 shows that the amplitudes and shapes of the disturbances tend to vary considerably at an unstable operating condition. The disturbances frequently die out and grow again.

The frequencies and amplitudes given in table III were averaged over a large number of cycles (100 or more). Mean frequencies were fairly easy to determine for the large-amplitude disturbances (e.g., figs. 14(a) to (g)). The frequencies of the small-amplitude fluctuations (e.g., figs. 14(h) to (j)) were much harder to determine because the wave shape was not clearly defined and tended to change from cycle to cycle even over short time intervals.

Pressure traces for runs 4, 6, and 8 are given in figure 14 for both the 1- and 2-foot stations. Comparison of the responses at the two stations shows that they are grossly similar in shapes and amplitudes, and the phase shifts, if any, are small.

SUMMARY OF RESULTS

The results obtained from the investigation for local heat-transfer and static pressures for steam condensing inside a tube in vertical downflow with high inlet vapor velocity may be summarized as follows:

- 1. The local condensing heat-transfer coefficient correlated with the product of the local quality and the square of the test-fluid total mass velocity.
- 2. Mean condensing heat-transfer coefficients were proportional to the total mass velocity of the test fluid, as found by other investigators. The mean coefficients varied from 3860 to 11 850 Btu per hour per square foot per ^OF over a test-fluid total mass velocity range from 64 900 to 336 000 pounds per hour per square foot.
- 3. The local condensing heat-transfer coefficients were shown to vary with distance from the condenser inlet. In general, high values of the coefficient occurred at the inlet and decreased in magnitude with increasing length. The coefficients at the inlet varied from 18 946 to 2856 Btu per hour per square foot per ^OF. At the downstream end of the condenser, the coefficients varied from 7786 to 505.

- 4. The overall friction-pressure loss for steam condensing inside a tube was satisfactorily correlated in terms of common pipe friction parameters that included the flow rate, total condensing length, and specific volume of the vapor at the condenser inlet.
- 5. Net overall static-pressure rises in the condenser were obtained for conditions of high heat flux. Static-pressure changes varied from a net increase of 1.32 pounds per square inch to a net decrease of 35.34 pounds per square inch.
- 6. Unstable condenser operation occurred at particular combinations of boiler supply steam pressure, coolant flow rate, and condensate flow control valve settings. Unstable operating points could be detected by unsteady condenser pressures. These conditions originated in the condenser and were avoided when taking the steady-state data.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, December 2, 1966, 120-27-02-01-22.

APPENDIX A

SYMBOLS

^c p, k	specific heat of coolant, Btu/(lb)(OF)	$\mathbf{P}_{\mathbf{IF}}$	static pressure at downstream liquid-vapor interface, psia
D D _i	diameter, ft inside diameter, ft	ΔP_{m}	overall momentum-pressure change, psi
D _i	outside diameter, ft	P_s	static pressure, psia
f	friction factor	ΔP_{S}	overall static-pressure change, psi
$G_{\mathbf{k}}$	coolant mass velocity, $lb/(hr)(ft^2)$	Q	rate of heat flow, Btu/hr
G _t	test-fluid total mass velocity, $lb/(hr)(ft^2)$	q	heat flux, Btu/(hr)(ft ²)
$G_{\mathbf{v}}$	vapor mass velocity (based on inner diameter of tube),	$q_{\mathbf{i}}$	heat flux based on inside tube area, $Btu/(hr)(ft^2)$
	lb/(hr)(ft ²)	Re	Reynolds number of vapor evalu-
$g_{\mathbf{c}}$	conversion factor, 4.17×10^8 (lb mass)(ft)/(hr ²)(lb force)	1/1/10	ated at condenser inlet condi- tions
h _{cl}	local condensing heat-transfer coefficient, Btu/(hr)(ft ²)(^o F)	^t c	condensate temperature at condenser exit, measured at 8.5 ft, ^O F
h _{cm}	mean condensing heat-transfer coefficient, $Btu/(hr)(ft^2)(^{o}F)$	$\Delta t_{ extbf{f}}$	temperature drop across condensate film, OF
K	conversion factor, $(144)(in.^2)/(ft^2)$	t _{iw}	local inner wall temperature, OF
1.	, ,, ,, ,	t _k	local coolant temperature, ^O F
k _{m,w}	wall mean thermal conductivity, $(Btu)(ft)/(hr)(ft^2)(^{O}F)$	t _{ow}	local outer wall temperature, ^O F
L	length, ft	Δt _s	amount of superheat of vapor
$\mathbf{L_{c}}$	total condensing length, ft	ъ	upstream of test section,
$\Delta P_{\mathbf{f}}$	overall friction-pressure		measured at -1.75 ft, ^O F
•	change, psi	^{t}v	vapor temperature upstream of
$^{\Delta P}_G$	change in pressure due to change in elevation, psi		condenser, measured at -1.75 ft, ^O F
	, , , , , , , , , , , , , , , , , , , 	$^{\mathrm{t}}\mathrm{_{vs}}$	vapor saturation temperature corresponding to pressure, ^O F

t_w local faired value of wall temperature, ^OF

 V_{vi} vapor velocity at beginning of condensing portion of condenser, ft/sec

v_i vapor specific volume at beginning of condensing portion of condenser, ft³/lb w_k coolant flow rate, lb/hr

w_t test-fluid total flow rate, lb/hr

 w_v vapor flow rate, lb/hr

x vapor quality

Subscript:

l local

APPENDIX B

DATA REDUCTION AND COMPUTATIONS

For the evaluation of the local heat flux the following assumptions were made:

- (1) Only radial flow of heat
- (2) No heat loss to ambient surroundings
- (3) Measured change in temperature of coolant equal to change in its bulk tempera-

The local heat flux was calculated from the following equation:

$$q = \frac{w_k c_{p,k} dt_k}{\pi D dL}$$
(B1)

where the numerator represents the increase in enthalpy of the coolant and the denominator represents the area normal to the flow of heat. The slope of the coolant temperature profile dt_k/dL was measured graphically from a plot of coolant temperature as a function of length. The heat flux at the inner surface of the condenser tube was found by substituting the inner diameter into equation (B1).

The local condensing heat-transfer coefficient was calculated from the following:

$$h_{cl} = \frac{q_i}{(t_{vs} - t_{iw})}$$
 (B2)

where t_{vs} is the local vapor saturation temperature corresponding to the local static pressure, and t_{iw} is the inner wall temperature. The inner wall temperature was computed from the following equation for radial heat flow in a cylinder (ref. 7, p. 13).

$$Q = \frac{2\pi Lk_{m, w}(t_{iw} - t_{ow})}{\ln \frac{D_o}{D_i}}$$
(B3)

Solving equation (B3) for the inner wall temperature t_{iw} in terms of the local heat flux and the outer wall temperature results in

$$t_{iw} = t_{ow} + \frac{q_i D_i \ln \frac{D_o}{D_i}}{2k_{m,w}}$$
(B4)

The thermal conductivity of the tube wall $k_{m,\,W}$ was assumed constant over the temperature range encountered in the test, and a value of 226 Btu per hour per square foot per O F per foot was used for oxygen-free copper (ref. 15). The diameter ratio in equation (B4) is the ratio of the diameter at which the temperature is measured to the inner diameter of the tube. The physical junction of the tube wall thermocouple was placed 0.034 inch from the inner surface. The actual junction is the location where electrical continuity is first encountered between the two thermocouple wires (i. e., the point where the two wires are in contact with the silver solder). Because of uncertainty in the thermal conductivity of the silver solder fill material and in the integrity of the solder, however, the temperature difference between the actual junction and the physical junction was not taken into account. The diameter at which the temperature was measured, therefore, was taken as 0.361 inch. After substituting the thermal conductivity, proper diameter ratio, and faired value of the measured wall temperatures, into equation (B4), the expression for the inner wall temperature becomes

$$t_{iw} = t_w + 1.128 \times 10^{-5} q_i$$
 (B5)

Mean condensing heat-transfer coefficients were evaluated by plotting the local coefficients as a function of length. The area under the curve was then determined and divided by the condensing length to obtain the mean coefficient.

Local condensing rate was computed from heat balances. The condenser was divided into 0.25-foot increments. The heat flux was assumed constant for each increment. The reduction in the enthalpy of the vapor and liquid was assumed negligible compared with the release of the latent heat of vaporization. This assumption is valid to very low (less than 10 percent) qualities. The rate of heat flow for an increment was evaluated by multiplying the heat flux by the surface area of the increment based on the inside diameter of the tube. The rate of formation of liquid in the increment was then calculated by dividing the heat flow rate by the local value of the latent heat of vaporization. The latent heat was taken to be a function of the local saturation temperature. The local vapor flow rate at a particular location in the condenser was then the difference between the test-fluid total flow rate and the total liquid flow rate at that location.

REFERENCES

- 1. Goodykoontz, Jack H.; and Dorsch, Robert G.: Local Heat-Transfer Coefficients for Condensation of Steam in Vertical Downflow Within a 5/8 inch-Diameter Tube. NASA TN D-3326, 1966.
- 2. Eckert, Ernst R. G.: Introduction to the Transfer of Heat and Mass. McGraw-Hill Book Co., Inc., 1950.
- 3. Boelter, L. M. K.; Romie, F. E.; Guibert, A. G.; Miller, M. A.: An Investigation of Aircraft Heaters. Part 28 Equations for Steady-State Temperature Distribution Caused by Thermal Sources in Flat Plates Applied to Calculation of Thermocouple Errors, Heat-Meter Corrections, and Heat Transfer by Pin-Fin Plates. NACA TN 1452, 1948.
- 4. Albers, James A.; and Macosko, Robert P.: Experimental Pressure-Drop Investigation of Nonwetting, Condensing Flow of Mercury Vapor in A Constant-Diameter Tube in 1-G and Zero-Gravity Environments. NASA TN D-2838, 1965.
- 5. Keenan, Joseph H.; and Keyes, Frederick G.: Thermodynamic Properties of Steam. John Wiley and Sons, Inc., 1936.
- 6. Vennard, John K.: Elementary Fluid Mechanics. Third ed., John Wiley and Sons, Inc., 1954.
- 7. McAdams, William H.: Heat Transmission. Third Ed., McGraw Hill Book Co., Inc., 1954.
- 8. Hilding, Winthrop E.; and Coogan, Charles H., Jr.: Heat Transfer Studies of Vapor Condensing at High Velocities in Small Straight Tubes. NASA CR-124, 1964.
- 9. Coe, Harold H.; Gutierrez, Orlando A.; and Fenn, David B.: Comparison of Calculated and Measured Characteristics of Horizontal Multitube Heat Exchanger With Steam Condensing Inside Tubes. NASA TN D-3670, 1966.
- Carpenter, E. F., and Colburn, A. P.: The Effect of Vapor Velocity on Condensation Inside Tubes. Proceedings of the General Discussion on Heat Transfer, Inst. Mech. Eng. (London), and ASME, 1951, pp. 20-26.
- 11. Rohsenow, W. M.; Webber, J. H.; and Ling, A. T.: Effect of Vapor Velocity on Laminar and Turbulent-Film Condensation. Trans. ASME, vol. 78, no. 8, Nov. 1956, pp. 1637-1643.
- 12. Dukler, A. E.: Dynamics of Vertical Falling Film Systems. Chem. Eng. Progr., vol. 55, no. 10, Oct. 1959, pp. 62-67.

- 13. Akers, W. W.; and Rosson, H. F.: Condensation Inside a Horizontal Tube. AIChE Chem. Eng. Progr. Symp. Ser., vol. 56, no. 30, 1960.
- 14. Carpenter, Frank G.: Heat Transfer and Pressure Drop for Condensing Pure Vapors Inside Vertical Tubes at High Vapor Velocities. Ph.D. Thesis, Univ. of Delaware, 1948.
- 15. Materials in Design Engineering, Materials Selector Issue, vol. 56, no. 5, Mid-October 1962.

TABLE I. - EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	va lue	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-	,	q _i ,	ing to	film,	$^{\mathrm{h}}\mathrm{_{c}l}$,	
!	o _F	ature,		Btu	pressure,	Δt_f ,	Btu	
	- !	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(⁰ F)	
		o _F			° _F			
	L					Run 163		
-1.75			23.63		237			Test-fluid total flow rate, w _t , 60 lb/hr; coolant flow
-1.50			20.89					rate, wk, 830 lb/hr; vapor temperature upstream of
79			18.96					condenser measured at -1.75 ft, t _v , 244° F; con-
08			16.94	 -		-		densate temperature at condenser exit measured at
. 03	152	-						8.50 ft, t _c , 89° F; test-fluid total mass velocity, G _t ,
4.4	1	100	16.75	102 000	210 0	20.6	9369	127 800 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14	195	196	16.75	193 000	218.8	26.9		1 080 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	135	189	16. 25	193 000	218. 1 215. 1	32.9	7175 5866	4.1 ft; overall friction-pressure change, ΔP_f , 7.42
1.98	117	180	15.65	193 000		Į.		psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	97	167	15.64	193 000	215.1	45.9 58.4	4205 3031	5550 Btu/(hr)(ft ²)(O F); vapor state at -1.75 ft, Δt_{s} ,
3.50		155		177 000	215.4	36.4	3031	7.0° F; vapor quality at -0.08 ft, 0.98; heat balance
3. 75		144		140 000	215.5	69.9	2003	error, -1.0 percent; vapor velocity at beginning of
3.98	83	130	15.84	109 000	215.8	84.6	1290	condensing portion of condenser, V _{vi} , 819 ft/sec
4. 98	78	88	15.74	37 000				
5.48			15.60					
5.98	76	81	15.61					
6.48			15.59					
6.98	75	78	15.73					
7.56		78	15.68					
7. 95	75							
8.06			15.68					
						Run 164	l	
-1.75			24.22		238. 4			Test-fluid total flow rate, w _t , 45.3 lb/hr; coolant flo
-1.50			22.77					rate, w _k , 555 lb/hr; vapor temperature upstream of
79			21.79					condenser measured at -1.75 ft, t _v , 240° F; con-
08			20.94					densate temperature at condenser exit measured at
. 03	164							8.56 ft, t_c , 125° F; test-fluid total mass velocity, G 96 500 lb/(hr)(ft ²); coolant mass velocity, G_k ,
. 14		210	20.59	174 000	229.5	17.5	9943	652 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 98	142	201	20.36	174 000	228. 9	25.9	6718	3.5 ft; overall friction-pressure change, ΔP_f , 3.85
1.98	121	190	20.14	174 000	228. 3	36. 3	4793	psi; mean condensing heat-transfer coefficient, h _{cm}
2. 98	94	178	20.01	174 000	228.0	48.0	3625	5460 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_g ,
3. 50		165		102 800	228.0	61.9	1661	1.6° F; vapor quality at -0.08 ft, 0.99; heat balance
3. 75		154		78 300				error, 7.0 percent; vapor velocity at beginning of
3.98	79	141	19.90	55 000				condensing portion of condenser, V _{vi} , 507 ft/sec
4.98	75	79	19.82	20 700				
5.48			19.74					
5.98	75	76	19.71					
6. 48			19.71					
6.98	72	75	19.61					
7. 56	72	75	19.73					
7. 95	72							
8.06			19.89					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	·
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient.	
	t _k ,	temper-	P	q _i ,	ing to	film,	h _{c/.} ,	
	o _F	ature,		Btu	pressure,	Δt_{ϵ} ,	Btu	
	F				t _{vs} ,	o _F		
		tw,		(hr)(ft ²)	vs'	_ F	(hr)(ft ²)(^o F)	
	L	°F	<u> </u>		F	l	<u> </u>	
						Run 165	·	
-1.75			24.80		239.7			Test-fluid total flow rate, w _t , 44.3 lb/hr; coolant flow
-1.50			23.50					rate, w _k , 830 lb/hr; vapor temperature upstream of
79			22.67					condenser measured at -1.75 ft, t _v , 239° F; con-
08			21.91					densate temperature at condenser exit measured at
. 03	128							8.50 ft , t_c , 113° F; test-fluid total mass velocity, G_t ,
		10-	01.00	001 000	000 -	,, ,	0000	94 300 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		195	21.86	301 000	232.7	33.3	9039	975 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		188		276 000	233.0	41.9	6587	2.5 ft; overall friction-pressure change, ΔP_f , 2.27
. 98	104	179	22.12	240 000	233.4	51.7	4642	psi; mean condensing heat-transfer coefficient, hcm,
1.50		167		198 500	233.6	64.3	3087	4230 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, Δt_s ,
1.98	85	150	22.31	170 000	233.8	81.9	2076	0.7° F; vapor quality at -0.08 ft, 0.99; heat balance
2. 25		138		133 000	233.9	94.4	1409	error, -6.0 percent; vapor velocity at beginning of
2.98	76	82	22. 24	32 200				condensing portion of condenser, V _{vi} , 478 ft/sec
3.98	75	75	22.33					''
4.98	75	75	22.27					
5. 48			22.28					
5. 98	75	75	22.27					
	1	.,,	1		1	Run 166	1	
		1	1 01 51	T	200 5	T	T	The table of table of the table of
-1.75			24. 71		239.5			Test-fluid total flow rate, w _t , 42.8 lb/hr; coolant flow rate, w _k , 1062 lb/hr; vapor temperature upstream of
-1.50			23.51					condenser measured at -1.75 ft, t_v , 241° F; con-
79			22.73					densate temperature at condenser exit measured at
08	120		22.08					8.50 ft, t_c , 113° F; test-fluid total mass velocity, G_t ,
.03	120							91 300 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		188	22.08	336 000	233. 2	41.4	8116	1 250 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 50		186		322 000	233.9	44. 3	7269	2.4 ft; overall friction-pressure change, ΔP_f , 1.80
. 98	98	169	22.59	291 000	234.5	62.2	4678	psi; mean condensing heat-transfer coefficient, h_{cm} ,
1.50		150		216 000	235.0	82.5	2618	3860 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt _s ,
1.75		139		136 000	235.0	94.5	1439	1.5° F; vapor quality at -0.08 ft, 0.99; heat balance
1.98	83	126	22.79	83 400	235.0	108.1	770	error, -5.0 percent; vapor velocity at beginning of
2. 25		109		56 100	235.0	125.4	505	condensing portion of condenser, V _{vi} , 458 ft/sec
2. 23	80	82	22. 82	50 100	200.0	120.4		''
3. 98	79	79	22. 83					
4. 98	79	79	22. 85					
4. 50	13		22.00	1		<u> </u>		1

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-	-	q _i ,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	Δt _f ,	Btu	
	ı r	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(°F)	
		°F		(11)(11)	o _F		(11)(11)(11)	
				L		Run 167		
-1.75			28. 71		247. 9			Test-fluid total flow rate, w _t , 60.8 lb/hr; coolant flow
-1.50			26.40					rate, w ₁ , 535 lb/hr; vapor temperature upstream of
79			24.99					condenser measured at -1.75 ft, t _v , 254° F; con-
08			23.57					densate temperature at condenser exit measured at
. 03	192							8.50 ft, t _c , 144 ⁰ F; test-fluid total mass velocity, G _t ,
. 14		222	23.00	103 800	235.5	12.3	8 430	129 300 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 98	177	216	23.00	117 000	233.0	15.7	7 460	628 000 lb/(hr)(ft ²); total condensing length, L _c ,
1.98	161	209	20.74	122 200	229.9	19.5	6 270	5.7 ft; overall friction-pressure change, ΔP_f , 9.68
2.98	139	199	19.54	141 400	226.7	26.1	5 410	psi; mean condensing heat-transfer coefficient, h _{cm} ,
3.98	120	187	18.99	152 500	225. 2	36.5	4 180	5250 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt _s ,
3. 90	120	101	10.33	132 300	223.2	30.0	1 100	6.1° F; vapor quality at -0.08 ft, 0.99; heat balance
4.98	96	170	18.71	140 000	224. 5	52.9	2 650	error, 5.0 percent; vapor velocity at beginning of
5.48		159	18. 87	121 900	224. 8	64. 4	1 890	condensing portion of condenser, V _{vi} , 614 ft/sec
5.98	76	144	18.68	121 900				
6.48		96	18.46	42 900				
6.98	69	85	18.48					
7.56	69	79	18.67					
7.95	69							
8.06			18.65					
	т	1	T	T	т	Run 168	3	
-1.75			27. 71		245.9			Test-fluid total flow rate, w _t , 57.8 lb/hr; coolant flo
-1.50			25. 56			•		rate, w _k , 845 lb/hr; vapor temperature upstream of
79			24. 22					condenser measured at -1.75 ft, t _v , 252° F; con-
08			22.92					densate temperature at condenser exit measured at
. 03	150							8.50 ft, t _c , 118° F; test-fluid total mass velocity, G
. 14		205	22.47	281 000	234. 2	26.0	10 808	123 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 50		201		281 000	233.8	29.6	9 493	992 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	127	195	22. 29	260 000	233.7	35. 8	7 263	3.2 ft; overall friction-pressure change, ΔP_f , 5.03
1.50		188		230 000	233.7	43. 1	5 336	psi; mean condensing heat-transfer coefficient, h _{cm}
1.98	106	180	22. 27	223 000	233.6	51.1	4 364	4870 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt _s ,
	1							6.1° F; vapor quality at -0.08 ft, 0.99; heat balance error, 2.0 percent; vapor velocity at beginning of
2.50		170		205 000	233.9	61.6	3 328	condensing portion of condenser, V _{vi} , 598 ft/sec
2.98	86	153	22.43	175 500	234.1	79.1	2 219	, VI
3.50		100		60 600				1
3.98	79	86	22. 34					
4.98	78	79	22. 38					
5.48	78	79	22.42					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	$\Delta t_{\mathbf{f}}$,	Btu	
	•	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(⁰ F)	
		o _F		(1117)(1177)	o _F		,(,(,	
		ı				Run 169		
-1.75			28. 86		248. 2			Test-fluid total flow rate, w _t , 58.5 lb/hr; coolant flow
-1.50			26.61					rate, w _k , 1045 lb/hr; vapor temperature upstream of
79			25. 21					condenser measured at -1.75 ft, t, 254° F; con-
08			23.90					densate temperature at condenser exit measured at
. 03	138							8.50 ft , t_c , 111° F; test-fluid total mass velocity, G_t ,
		•						124 500 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		205	23.60	345 000	236.9	28.0	12 321	1 228 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		196		332 000	236.7	38.0	8 737	2.6 ft; overall friction-pressure change, ΔP_f , 4.22
. 98	115	188	23.64	303 000	237.0	45.6	6 645	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		179		273 000	237. 3	55. 2	4 946	6020 Btu/(hr)(ft 2)($^{\rm O}$ F); vapor state at -1.75 ft, $\Delta t_{\rm s}$,
1.98	95	167	23.94	235 000	237.7	68.0	3 456	5.8° F; vapor quality at -0.08 ft, 0.99; heat balance
2.50		147		183 000	237.9	88. 8	2 061	error, -2.0 percent; vapor velocity at beginning of
2.75		131		115 000				condensing portion of condenser, V _{vi} , 583 ft/sec
2.98	82	109	23.95	58 600				
3.98	81	82	23, 95					
4.98	80	81	23.99					
5.48	80	81	24.06					
	L		1			Run 170	- L	
-1.75			28.93		247. 3			Test-fluid total flow rate, w _t , 56.7 lb/hr; coolant flow
-1.50			26.88					rate, w., 1325 lb/hr; vapor temperature upstream of
79			25. 56					condenser measured at -1.75 ft, t _v , 254° F; con-
08			24. 28					densate temperature at condenser exit measured at
. 03	127							8.50 ft, t _c , 113° F; test-fluid total mass velocity, G _t 121 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		193	24.07	460 000	238.0	39.8	11 558	1 555 000 lb/(hr)(ft ²); total condensing length, L_c ,
.50		187		416 000	238. 4	46.7	8 908	
.98	105	177	24.48	358 000	238.9	57.9	6 183	2.1 ft; overall friction-pressure change, ΔP_f , 3.44 psi; mean condensing heat-transfer coefficient, h_{cm} ,
1.50		164		274 000	239. 5	72.4	3 785	6150 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_g ,
1.98	89	143	24.92	171 000	240.0	95.1	1 798	6.70 F; vapor quality at -0.08 ft, 0.99; heat balance
2. 25		127		133 200				error, 0.6 percent; vapor velocity at beginning of
2. 25		107		107 500	1			condensing portion of condenser, V _{vi} , 558 ft/sec
2.50	83	87	24. 79	107 500				,,,
	83	83	24. 79					
3.98	83	83	24. 78					}
4.98	03	63	24.81				1	

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local coolant	Local faired	Static pressure,	Heat flux based on	Vapor saturation	Tempera- ture drop	Local condensing	Conditions
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
••	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
		temper-	P	q _i ,	ing to	film,	,	
	^t k, o _F	ature,		Btu	pressure,	Δt _f ,	$\frac{\frac{h_{cl}}{Btu}}{(hr)(ft^2)({}^{O}F)}$	
	F	t _w ,		(hr)(ft ²)	t _{vs} ,			
		o _F		(11)(11)	o _F	f	(111/11/11/(1/	
						Run 171		
-1.75			30. 70		251.6			Test-fluid total flow rate, w, 68.4 lb/hr; coolant flow
-1.50								rate, wk, 530 lb/hr; vapor temperature upstream of
79			28. 31				-	condenser measured at -1.75 ft, t _v , 257° F; con-
08			26. 82					densate temperature at condenser exit measured at
. 03	206							8.50 ft, t_c , 162^0 F; test-fluid total mass velocity, G_t 145 800 $lb/(hr)(ft_0^2)$; coolant mass velocity, G_k ,
. 14		230	26.04	90 500	242. 4	11.4	7 938	622 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	192	225	24. 39	101 000	238.7	12.6	8 016	6.7 ft; overall friction-pressure change, ΔP_f , 12.88
1.98	178	219	23.05	113 000	235.6	15. 3	7 386	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	159	212	21. 25	122 200	231.2	17.8	6 865	6000 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, $\Delta t_{\rm g}$,
3.98	143	202	19.93	130 800	227.8	24.3	5 383	5.4° F; vapor quality at -0.08 ft, 0.99; heat balance
4.98	122	190	19. 18	151 000	225. 7	34. 0	4 441	error, 6.0 percent; vapor velocity at beginning of
5.48			19.11		225.6			condensing portion of condenser, V _{vi} , 611 ft/sec
5.98	100	173	19.27	185 000	226.0	50.9	3 634	
6.48		166	19. 22	197 500	225.8	57.6	3 429	
6.75		151		199 000				
6.98	73	140	19.10	26 800				
7.56	71	94	19. 35					
7.95	69		19,44					
8.06								
			,			Run 172	Y	
-1.75			30.70		251.6			Test-fluid total flow rate, w _t , 67.4 lb/hr; coolant flo
-1.50								rate, w, 880 lb/hr; vapor temperature upstream of
79			28. 12					condenser measured at -1.75 ft, t _v , 257° F; con-
08			26.41					densate temperature at condenser exit measured at
. 03	157							8.50 ft, t _c , 113° F; test-fluid total mass velocity, G ₁ 141 300 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		213	26. 19	305 000	242.7	26. 3	11 597	1 033 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 50		209		293 000	242.2	30. 1	9 734	
. 98	133	203	25.68	276 000	241.6	35.5	7 775	3.3 ft; overall friction-pressure change, ΔP_f , 6.00
1.50		196		247 000	241.3	42.5	5 812	psi; mean condensing heat-transfer coefficient, $h_{\rm c.m.}$; 5810 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, $\Delta t_{\rm g}$,
1.98	111	188	25.47	237 000	241.2	50.5	4 693	5810 Btu/(hr)(it)($^{\circ}$ F); vapor state at -1.75 ft, Δt_g , 5.40 F; vapor quality at -0.08 ft, 0.99; heat balance
2. 50		178		233 000	241.2	60.6	3 845	error, 0 percent; vapor velocity at beginning of
2.98	89	164	25.58	233 000	241. 2	74.8	3 115	condensing portion of condenser, V _{vi} , 611 ft/sec
3.50		138		87 900				**
3.98	80	92	25.71	48 600				
4.98	77	81	25.71					
5.48			25.61					
	l =-	81	25.63	1	i .	1	İ	Í
5.98	76	0.1	25.03					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q _i ,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	Δt_f ,	Btu	
	_	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(⁰ F)	
	ļ	o _F		()	°F	-	(,(,(,	
	1	L			<u> </u>	Run 173	L	
-1. 75	T		30. 70		251.6			Test-fluid total flow rate, w _t , 67.5 lb/hr; coolant flow
-1.50								rate, w _k , 1050 lb/hr; vapor temperature upstream of
79			28. 10				<u>-</u>	condenser measured at -1.75 ft, t _v , 257° F; con-
08			26.56					densate temperature at condenser exit measured at
. 03	147							8.50 ft, to, 108° F; test-fluid total mass velocity, G,
. 14		207	26.09	331 000	242.5	31.8	10 410	143 800 lb/(hr)(ft ²); coolant mass velocity, G_k , 1 232 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 50		203		331 000	242.2	35.5	9 324	2 0 th correct friction management and felicities
.98	124	196	25. 89	313 000	242.1	42.6	7 347	2.9 ft; overall friction-pressure change, ΔP_f , 5.81
1.50		188		289 500	242.1	50.9	5 688	psi; mean condensing heat-transfer coefficient, h _{cm} , 6120 Btu/(hr)(ft ²)(^O F); vapor state at -1.75 ft, Δt_s ,
1.98	103	179	25.95	276 000	242.2	60.1	4 592	5.4° F; vapor quality at -0.08 ft, 0.99; heat balance
			ļ					error, 0 percent; vapor velocity at beginning of
2.50		164		247 000	242.3	75.5	3 272	condensing portion of condenser, V _{vi} , 609 ft/sec
2.98	85	133	26.01	106 000				condensing portion of condenser, v _{vi} , vov 10, see
3.98	82	86	26.19					
4.98		82	26. 15					
5.98	80	82						
						Run 174		
-1.75			30.70		251.6			Test-fluid total flow rate, w _t , 68.2 lb/hr; coolant flow
-1.50								rate, wk, 1330 lb/hr; vapor temperature upstream of
79			27.91					condenser measured at -1.75 ft, t _v , 257° F; con-
08			26. 23					densate temperature at condenser exit measured at
. 03	136							8.50 ft, t_c , 107^0 F; test-fluid total mass velocity, G_t 145 100 lb/(hr)(ft ²); coolant mass velocity, G_k ,
. 14		200	25.86	405 000	242.0	37. 4	10 829	1 561 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 50		194		398 000	241.9	43. 4	9 171	2.4 ft; overall friction-pressure change, ΔP_f , 5.05
.98	114	186	25.93	365 000	242.2	52.1	7 006	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		177		333 000	242.7	62.0	5 371	6470 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, $\Delta t_{\rm c}$,
1.98	95	163	26.46	295 000	243.3	77.0	3 831	5.4° F; vapor quality at -0.08 ft, 0.99; heat balance
2. 25		134		253 000	243.5	106.7	2 371	error, -0.5 percent; vapor velocity at beginning of
2.50	\ <u></u>	124		177 500				condensing portion of condenser, V _{vi} , 619 ft/sec
2.98	84	102	26.45					
			ı	1	1		1	1
3.98	83	85	26.57					· · · · · · · · · · · · · · · · · · ·

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

L,	10.04							
	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	va lue	Pg,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q _i ,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	Δt_f ,	Btu	
	F	t _w ,	ļ	(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(^o F)	
		°F			o _F			
				T		Run 175		
-1.75		-	22.97		235.4			Test-fluid total flow rate, w _t , 48.8 lb/hr; coolant flow
-1.50			21.15					rate, w _k , 405 lb/hr; vapor temperature upstream of
79			20.02			-		condenser measured at -1.75 ft, t _v , 242° F; con-
08		-	18.79					densate temperature at condenser exit measured at
.03	190							8.50 ft, t_c , 155° F; test-fluid total mass velocity, G_t 103 900 lb/(hr)(ft_c^2); coolant mass velocity, G_k ,
. 14		203	18.16	55 400	223.0	19.4	2856	476 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	176	204	17.13	65 000	220.0	15.3	4248	6.7 ft; overall friction-pressure change, ΔP_f , 9.18
1.98	166	201	16.19	73 500	216.9	15.1	4868	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	149	195	15.05	84 500	213.1	17. 2	4913	4130 Btu/(hr)(t^2)(°F); vapor state at -1.75 ft, Δt_g ,
3.98	135	187	14.11	95 400	210.0	21.9	4356	6.6° F; vapor quality at -0.08 ft, 0.99; heat balance
4.98	115	178	13.46	103 000	207. 6	28.5	3614	error, 2.6 percent; vapor velocity at beginning of
5.48			13.43					condensing portion of condenser, V _{vi} , 591 ft/sec
5.98	91	167	13.43	154 000	207.5	38.8	3969	
6.48		159	13.33	93 000	207. 2	47.1	1975	
6.98	70	147	13. 16	38 000				
7.56	67	126	13.23			-		
7.95	65							
8.06			13.24					
				-		Run 176		
-1.75			22.63		234.6			Test-fluid total flow rate, w _t , 59.3 lb/hr; coolant flo
-1.50			19.63					rate, w _k , 805 lb/hr; vapor temperature upstream of
79			17.47					condenser measured at -1.75 ft, t, 246° F; con-
08			15.03					densate temperature at condenser exit measured at
. 03	148							8.50 ft, t_c , 119^O F; test-fluid total mass velocity, G 126 200 lb/(hr)(f_c^2); coolant mass velocity, G_k ,
. 14		189	13.48	165 000	207. 6	16.7	9880	946 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	132	179	11.94	160 500	201.7	20.9	7680	5.3 ft; overall friction-pressure change, ΔP_f , 15.45
1.98	119	167	9.61	154 000	191.5	22.8	6754	noit mean condensing heat transfer coefficient h
2.98	103	153	7.13	144 000	177. 8	23. 2	6207	psi; mean condensing heat-transfer coefficient, h cm 6070 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_{g} ,
3.98	92	140	5.86	129 500	169. 2	27.7	4675	11.4° F; vapor quality at -0.08 ft, 0.98; heat balance
4.98	80	123	6.05	111 000	170.5	46.2	2403	error, 5.2 percent; vapor velocity at beginning of
5.48		112	6.23	87 500			2400	condensing portion of condenser, V _{vi} , 898 ft/sec
5.98	72	95	6.39	53 800				
6.48	'2	73	6.40	00 000				
6.98	69	73	6. 19					
7, 56	69	73	6.40					
1.00				1	1	1	1	1
7. 95	69							

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-	ĺ	q,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	Δt_f ,	Btu	
	r	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(°F)	
		o _F		(iir)(it)	° _F	r		
						Run 177		
-1.75			31.49		253.2			Test-fluid total flow rate, w _t , 80.0 lb/hr; coolant flo
-1.50			27.42					rate, w, 1065 lb/hr; vapor temperature upstream of
79			23.65					condenser measured at -1.75 ft, t _v , 262° F; con-
08			21.73					densate temperature at condenser exit measured at
. 03	169							8.50 ft, t _c , 134° F; test-fluid total mass velocity, G
								170 300 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		206	20.07	216 000	228.1	19.7	10 964	1 250 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	154	196	17.67	212 000	221.5	23.1	9 177	6.1 ft; overall friction-pressure change, ΔP _f , 23.13
1.98	141	183	14. 26	191 500	210.4	25.2	7 599	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	126 [.]	169	10.47	155 000	195.5	24.8	6 250	6690 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, Δt_{s} ,
3.98	118	153	7.37	136 000	179.1	24.6	5 528	8.8° F; vapor quality at -0.08 ft, 0.98; heat balance
4.98	108	144	5.97	128 000	169.8	24.4	5 246	error, 3.8 percent; vapor velocity at beginning of
5.48			6.61					condensing portion of condenser, V _{vi} , 861 ft/sec
5.98	107	132	6.62	128 000	174.5	41.1	3 114	
6.48		114	7. 31	116 500				
6. 75		96		75 600				
0. 10		30		15 500				
6.98	91	96	7.28					
7.56	91	96	7.53					
7.95	91							
8.06			7.52					
						Run 178		
-1.75			35. 80		260.6			Test-fluid total flow rate, w _t , 91.4 lb/hr; coolant flo
-1.50			31. 33					rate, wk, 1065 lb/hr; vapor temperature upstream o
79			28.49					condenser measured at -1.75 ft, t _v , 265° F; con-
08			25.56					densate temperature at condenser exit measured at
. 03	178							8.50 ft, t_c , 141^0 F; test-fluid total mass velocity, G 194 500 lb/(hr)(ft ²); coolant mass velocity, G_k ,
. 14		215	24. 01	206 000	237. 8	20.5	10 049	1 250 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 98	163	205	21.07	202 000	230.7	23.4	8 632	6.2 ft; overall friction-pressure change, ΔP_f , 24.10
1.98	149	192	17. 26	197 000	220.4	26. 2	7 519	psi; mean condensing heat-transfer coefficient, h _{cm}
2.98	133	180	13. 14	191 000	206.4	24. 3	7 860	6940 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_s ,
3.98	123	167	10.54	185 000	195.8	26.7	6 929	4.4° F; vapor quality at -0.08 ft, 0.98; heat balance
4.98	111	153	10. 23	177 000	194.5	39.5	4 481	error, 0 percent; vapor velocity at beginning of
4.98 5.48		146	10. 23	160 800	194.5	49.0	3 282	condensing portion of condenser, V _{vi} , 848 ft/sec
			1		1	59.0	1 839	
5.98	97	138	11.09	108 500	188. 2	1	1 939	
6.48		121	11. 35	57 000				
	93	99	11.14					
6.98				1	1	1	1	T. Control of the Con
	73	99	11. 39					
6.98	73 71	99	11. 39					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
Location,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	Conditions
ft	temper-	value		inside tube	temperature	across	heat-transfer	
10	ature,	of wall	P _s , psia	area,	correspond-	condensate	coefficient,	
		temper-	рыа	1	ing to	film,	· ·	
	t _k ,	ature,		q _i , Btu	pressure,	· ·	h _{cl} , Btu	
	o _F				-	Δt _f ,		
		t _w ,		(hr)(ft ²)	t _{vs} ,	°F	(hr)(ft ²)(^o F)	
		°F			°F		<u></u>	
	т.				+	Run 179		
-1.75			40.17		267.5			Test-fluid total flow rate, w _t , 98.9 lb/hr; coolant flow
-1.50			35.43					rate, w_k , 1065 lb/hr; vapor temperature upstream of condenser measured at -1.75 ft, t_v , 269° F; con-
79			32.46					condenser measured at -1.75 ft, t _v , 269° F; con-
08			29.43					densate temperature at condenser exit measured at
. 03	187							8.50 ft, t _c , 145° F; test-fluid total mass velocity, G _t ,
4.4		004	05.00	999 996	046.0	10.0	11 705	210 000 lb/(hr)(ft ²); coolant mass velocity, G _b ,
. 14	170	224	27.88	230 000	246.2	19.6	11 735	1 250 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	172	214	24.88	222 000	239.8	23.3	9 528	6.1 ft; overall friction-pressure change, ΔP _f , 23.19
1.98	157	203	21.04	212 000	230.7	25. 3	8 379	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	140	190	17.29	201 000	220.4	28.1	7 153	6770 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, Δt_{s} ,
3.98	127	178	15.68	184 000	215.2	35.1	5 242	1.5° F; vapor quality at -0.08 ft, 0.98; heat balance
4.98	113	163	15.93	175 000	216.1	51.1	3 425	error, 0 percent; vapor velocity at beginning of
5.48		154	16.35	165 800	217.5	61.6	2 692	condensing portion of condenser, V _{vi} , 803 ft/sec
5.98	103	135	16.69	140 700	218.5	81.9	1 718	
6.48		105	16.83	109 600				
6.98	94	102	16.62					
7.56	93	102	16.94					
7.95	93							
8.06			16.90					
						Run 181		
-1. 75			39.21		266.0			Test-fluid total flow rate, w _t , 106 lb/hr; coolant flow
-1.50			33.57					rate, w, 1578 lb/hr; vapor temperature upstream of
79			29.90					condenser measured at -1.75 ft, t,, 268° F; con-
08			25.75					densate temperature at condenser exit measured at
. 03	151							8.50 ft, to, 120° F; test-fluid total mass velocity, Gt,
. 14		202	23. 81	370 800	237.5	31.3	11 847	226 000 lb/(hr)(ft ²); coolant mass velocity, G_k , 1 853 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 98	134	188	18.59	342 000	224.1	32.3	10 588	
1.98	120	170	13.43	296 600	207.5	34.2	8 673	5.2 ft; overall friction-pressure change, ΔP _f , 28.67
2.98	105	151	9.48	234 800	190. 8	37.2	6 312	psi; mean condensing heat-transfer coefficient, h_{cm} , 6620 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_{g} ,
3.98	98	131	9.75	165 000	192. 2	59.3	2 782	2.0° F; vapor quality at -0.08 ft, 0.98; heat balance
4.98	89	114	10.30	109 000	194. 8	79.6	1 369	error, -7.0 percent; vapor velocity at beginning of
5.48		98	10.16	83 800				condensing portion of condenser, V _{vi} , 976 ft/sec
5.98	87	88	10. 19					
6.48			10.18					
6.98	84	88	10.16					
7.56	84		10.22					
7.95								
8.06			10. 20					
	L	L	1	L	L			

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-	_	q _i ,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	Δt _e ,	Btu	
	r	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(^o F)	
		o _F		(nr)(it)	o _F	f	(nr)(1t)(r)	
		<u> </u>	L		r	D 105		
	ı	г				Run 185	-	
-1.75		-	48. 23		278. 7			Test-fluid total flow rate, w _t , 131.0 lb/hr; coolant flow
-1.50			42.21					rate, wk, 2080 lb/hr; vapor temperature upstream of
79			36.69					condenser measured at -1.75 ft, t _v , 281° F; con-
08			31.99					densate temperature at condenser exit measured at
. 03	150							8.50 ft, t_c , 121^0 F; test-fluid total mass velocity, G_t ,
4.4		205	97 00	502 900	94E 9	34. 5	14 577	279 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14	100	1	27. 33	1	245.2	1		2 440 000 lb/(hr)(ft ²); total condensing length, L _c ,
.98	133	190	21.76	450 200	232.5	37. 4	12 037	5.7 ft; overall friction-pressure change, ΔP_f , 38.87
1.98	119	172	15.00	353 600	213.0	37.0	9 557	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	106	152	8.91	265 200	188.0	33.0	8 036	7910 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, Δt_{s} ,
3.98	100	128	4.82	177 900	160.7	30. 7	5 795	2.3° F; vapor quality at -0.08 ft, 0.98; heat balance
4.98	93	118	6.92	115 900	176.5	57.2	2 026	error, -6.6 percent; vapor velocity at beginning of
5.48		110	10.09	94 700	193.2	82. 1	1 268	condensing portion of condenser, V _{vi} , 985 ft/sec
5.98	90	91	9.84					
6.48			9. 83					
6.98	87	91	9.87					
_								
7. 56	87	91	9.91					
7. 95	87							
8.06			9.85					
						Run 187		
-1. 75			40.24		267.6			Test-fluid total flow rate, w _t , 105.8 lb/hr; coolant flow
-1.50			34.87					rate, w _k , 1400 lb/hr; vapor temperature upstream of
79			31.41					condenser measured at -1.75 ft, t _v , 269° F; con-
08			27.65					densate temperature at condenser exit measured at
. 03	161							8.50 ft, t_c , 121^0 F; test-fluid total mass velocity, G_t , $225\ 000\ lb/(hr)(ft^2)$; coolant mass velocity, G_k ,
. 14		209	25.57	363 000	241.3	28. 2	12 872	1 645 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 98	142	199	22. 24	346 000	233.6	30.7	11 270	
1.98	126	186	19.46	331 000	226.5	36.8	8 995	4.4 ft; overall friction-pressure change, ΔP_f , 19.93
2.98	106	174	18.96	290 000	225.2	47.9	6 054	psi; mean condensing heat-transfer coefficient, h_{cm} , 7870 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_{s} ,
3.98	93	144	19.87	153 000	227.6	81.9	1 868	1.4° F; vapor quality at -0.08 ft, 0.98; heat balance
								error, -4.0 percent; vapor velocity at beginning of
4.98	88	91	20.20					
5.48		91	20.23					condensing portion of condenser, V _{vi} , 910 ft/sec
5.98	86		20. 26					
6.48			20. 22					
6.98	84		20.23					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q _i ,	ing to	film,	h _{cl} ,	
	°F	ature,		Btu	pressure,	Δt _f ,	Btu	
	ļ	tw,	į	(hr)(ft ²)	t _{vs} ,	°F	(hr)(ft ²)(^o F)	
		°F			° _F			
						Run 188		
-1.75			48. 45		279.0			Test-fluid total flow rate, w _t , 116.9 lb/hr; coolant flow
-1.50			42.71					rate, w, 1400 lb/hr; vapor temperature upstream of
79			39.30					condenser measured at -1.75 ft, t, 279° F; con-
08			35.68					densate temperature at condenser exit measured at
. 03	173							8.50 ft, t _c , 127° F; test-fluid total mass velocity, G _t ,
. 14		225	34.16	415 000	257.8	28. 1	14 769	248 500 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 98	152	214	31.16	399 000	252.6	34.1	11 701	1 645 000 lb/(hr)(ft ²); total condensing length, L _c ,
1.98	133	202	29.09	372 000	248.6	42.4	8 774	4.0 ft; overall friction-pressure change, ΔP_f , 17.69
2.98	111	186	28.94	328 000	248. 3	58.6	5 597	psi; mean condensing heat-transfer coefficient, h _{cm} ,
3.50		171		264 000	248.8	74.8	3 529	8500 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, satu-
		ł						rated; vapor quality at -0.08 ft, 0.98; heat balance
3.98	97	149	29.70	196 000	249. 7	98.5	1 990	error, -1.0 percent; vapor velocity at beginning of condensing portion of condenser, $V_{\rm vi}$, 790 ft/sec
4.50		116		119 000				Condensing portion of condenser, VVI, 100 10, 500
4.98	91	96	30.00					
5.98	87	96	29.92					
6.98	86	96	29.95					
						Run 191		
-1.75			40.08		267. 3			Test-fluid total flow rate, w _t , 109.0 lb/hr; coolant flo
-1.50			34.27					rate, wk, 2180 lb/hr; vapor temperature upstream of
79			30. 37					condenser measured at -1.75 ft, t _v , 270° F; con-
08			25.90					densate temperature at condenser exit measured at
. 03	146							8.50 ft, t _c , 122° F; test-fluid total mass velocity, G _t
. 14		196	21.33	421 800	231.5	30. 7	13 739	232 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 98	131	183	12.70	379 000	204.6	17. 3	21 907	2 560 000 lb/(hr)(ft ²); total condensing length, L _c ,
1.98	120	164	8.93	324 900	188.0	20.3	16 005	5.2 ft; overall friction-pressure change, ΔP_f , 29.03 psi; mean condensing heat-transfer coefficient, h_{cm} ,
2.98	109	146	7.09	235 000	177.5	28.9	8 131	11 850 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_s ,
3.98	102	135	9.70	160 500	191.9	55.1	2 913	2.7° F; vapor quality at -0.08 ft, 0.98; heat balance
4.50		120		126 200	195.6	74.2	1 700	error, -5.4 percent; vapor velocity at beginning of
4.98	98	99	11.02	95 190	198.0	98.0	971	condensing portion of condenser, V _{vi} , 1018 ft/sec
5.48		99	11.06					
5.98	96		10.42					
		1	1	1	I	1	1	I Company of the comp

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q,	ing to	film,	h _{cℓ} ,	
}	o _F	ature,		Btu	pressure,	$\Delta t_{\mathbf{f}}$,	Btu	
	-	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(⁰ F)	
		°F		()(20)	° _F	_	(==)(==)(=)	
	L	<u> </u>	L	<u> </u>	l	Run 196		
-1. 75			26.60		243. 6			Test-fluid total flow rate, w _t , 66.0 lb/hr; coolant flow
-1.50			23.43					rate, w_k , 1844 lb/hr; vapor temperature upstream of
-1. 30 79			21.35					condenser measured at -1.75 ft, t _v , 247° F; con-
08			19.22					densate temperature at condenser exit measured at
. 03	119							8.50 ft, t_c , 101° F; test-fluid total mass velocity, G_t
								140 500 lb/(hr)(ft ²); coolant mass velocity G _k ,
. 14		179	18.68	568 800	224. 3	38. 9	14 622	2 165 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		174		466 000	224.9	45.7	10 197	2.6 ft; overall friction-pressure change, ΔP_f , 5.55
.98	101	165	19.31	313 300	226. 1	57.6	5 439	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		152		276 500	227.2	72.1	3 835	5230 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, Δt_s ,
1.98	89	134	20.03	186 500	228.0	91.9	2 029	3.4° F; vapor quality at -0.08 ft, 0.98; heat balance
0.05				150 400		104.0	1 405	error, -9.5 percent; vapor velocity at beginning of
2. 25		122		150 100	228. 3	104.6	1 435	condensing portion of condenser, V _{vi} , 783 ft/sec
2.98	84 83	87	20.36	107 900				VI.
3.98 4.98	83	84 83	20. 41 20. 18					
1.30	03		20.10		L			
ļ						Run 197		
-1.75			31.58		253.4			Test-fluid total flow rate, w _t , 72.3 lb/hr; coolant flow
-1.50			28.47					rate, wk, 1844 lb/hr; vapor temperature upstream of
79			26.58					condenser measured at -1.75 ft, t _V , 258° F; con-
08			24.00					densate temperature at condenser exit measured at
. 03	123							8.50 ft, t _c , 100° F; test-fluid total mass velocity, G _t 154 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		188	23.95	624 200	237.7	41.6	15 005	2 165 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		182		494 000	238. 2	50.6	9 763	2.2 ft; overall friction-pressure change, ΔP_f , 5.32
. 98	103	172	24.57	416 900	239.1	62.4	6 681	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		158		313 300	239.9	78. 4	3 996	7020 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, $^{\circ}$ L _e ,
1.98	90	139	25. 24	231 400	240.7	99. 1	2 335	4.6° F; vapor quality at -0.08 ft, 0.99; heat balance
2.50		106		111 800				error, -6.1 percent; vapor velocity at beginning of
2.98	85	86	25.38	111 000				condensing portion of condenser, V _{vi} , 718 ft/sec
3.98	84	85	25.43					
3. 30	1 04	""	20.30		1			

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	Pg,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q,	ing to	film,	h _{ci} ,	
	o _F	ature,		Btu	pressure,	Δt _f ,	Btu	
	•	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(^o F)	
		o _F		(117(117)	° _F	•	(412)(11)	
						Run 198		
-1. 75			31.37		253.0			Test-fluid total flow rate, w _t , 78.0 lb/hr; coolant flow
-1.50			27. 52					rate, w., 1844 lb/hr; vapor temperature upstream of
79			25. 21					condenser measured at -1.75 ft, t _v , 259° F; con-
08			22.43					densate temperature at condenser exit measured at
. 03	127							8.50 ft, t _c , 102° F; test-fluid total mass velocity, G _t ,
								166 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		189	21. 31	597 700	231.4	35. 7	16 742	2 165 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		183		506 000	231.1	42. 4	11 934	2.4 ft; overall friction-pressure change, ΔP _f , 7.87
.98	108	175	21.43	402 500	231.7	52. 2	7 711	psi; mean condensing heat-transfer coefficient, hcm.
1.50		163		334 500	233.9	67. 1	4 985	7570 Btu/(hr)(ft ²)(O F); vapor state at -1.75 ft, Δt_{s} ,
1.98	94	148	22. 26	274 700	233.6	82.5	3 330	6.0° F; vapor quality at -0.08 ft, 0.98; heat balance
2, 25		139		224 800	234.3	92.8	2 422	error, -2.8 percent; vapor velocity at beginning of
2.98	86	96	22.65	108 900				condensing portion of condenser, V _{vi} , 813 ft/sec
3.98	85	87	22.69				<u>_</u>	
			i			Run 199	<u> </u>	
-1. 75			31.37		253.0			Test-fluid total flow rate, w _t , 80.5 lb/hr; coolant flo
-1.50			27. 34		200.0			rate, w _k , 1844 lb/hr; vapor temperature upstream of
79			24.69					condenser measured at -1.75 ft, t _v , 260° F; con-
08			21.81			1		densate temperature at condenser exit measured at
. 03	129							8.50 ft, t _c , 103° F; test-fluid total mass velocity, G
. 00	123							171 300 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		190	20.25	602 500	228.6	31.8	18 946	2 165 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		184		491 000	228. 1	38.6	12 728	2.6 ft; overall friction-pressure change, ΔP_f , 9.14
.98	110	176	20.19	392 800	228. 4	48.0	8 183	psi; mean condensing heat-transfer coefficient, h _{cm}
1.50		165		303 000	229.6	61.2	4 951	8050 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_g ,
1.98	97	150	21.00	265 100	230.5	77.5	3 419	7.0° F; vapor quality at -0.08 ft, 0.98; heat balance
		100		000 222	001.5	0		error, -4.6 percent; vapor velocity at beginning of
2.50		132		232 600	231.6	97.0	2 398	condensing portion of condenser, V _{vi} , 863 ft/sec
2.98	87	109	21.54	138 800				, vi,
3.98	86	89	21.60					1
4.98	85	88	21.51					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q _i ,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	Δt_f ,	Btu	
	-F.	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(°F)	
		o _F		(hr)(ft")	o _F		(hr)(ft ⁻)(°F)	
		F			F			
						Run 200		
-1.75			31.29		252.9			Test-fluid total flow rate, w _t , 84.0 lb/hr; coolant flow
-1.50			27. 82					rate, wk, 1844 lb/hr; vapor temperature upstream of
79			23.68					condenser measured at -1.75 ft, t _v , 261° F; con-
08			20.11					densate temperature at condenser exit measured at
.03	131							8.50 ft, t _c , 107° F; test-fluid total mass velocity, G _t ,
		1		1	1	1	1	179 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		184	19.36	472 400	226. 2	36.9	12 802	2 165 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		181		409 000	221.7	36.1	11 330	2.9 ft; overall friction-pressure change, ΔP_f , 12.75
. 98	115	175	16.52	363 900	218.0	38.9	9 355	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		167		338 000	218. 2	47.4	7 131	7180 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, Δt_{s} ,
1.98	101	156	16.95	327 800	219.3	59.6	5 500	8.1° F; vapor quality at -0.08 ft, 0.98; heat balance
2.50		143		306 100	221.1	74.6	4 103	error, -6.0 percent; vapor velocity at beginning of
2.98	88	124	17. 81	157 400	221.1	14.0	4 103	condensing portion of condenser, V _{vi} , 967 ft/sec
3.98	87	87	17. 89	131 400				V 1
4.98	86	87	17.79					
		L		1	L	<u></u>	L	<u> </u>
	Ι	1	1	r –		Run 205		
-1.75			40.16		267.5			Test-fluid total flow rate, w _t , 105.3 lb/hr; coolant flow
-1.50			34. 89					rate, wk, 1932 lb/hr; vapor temperature upstream of
79			31.42					condenser measured at -1.75 ft, t _v , 268° F; con-
08			27. 69					densate temperature at condenser exit measured at
. 03	144							8.50 ft, t _c , 113° F; test-fluid total mass velocity, G _t ,
. 14		201	25.94	541 400	243.2	36. 1	14 997	224 500 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 50		198	20. 94	510 000	239.6	35. 9	14 206	2 270 000 lb/(hr)(ft ²); total condensing length, L _c ,
.98	125	191	24. 34	480 700	238.6	42. 2	11 391	2.9 ft; overall friction-pressure change, ΔP_f , 14.50
1.50		183	24. 34	438 000	238.6	50.7	8 639	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.98	109	173	24. 54	397 200	239.1	61.6	6 448	9120 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt _s ,
1.70	103	113	44. 34	381 200	239.1	01.0	0 330	0.5° F; vapor quality at -0.08 ft, 0.98; heat balance
2.50		159		354 200	239.9	76.9	4 606	error, -3.7 percent; vapor velocity at beginning of
2.98	94	141	25.55	212 500				condensing portion of condenser, V _{vi} , 907 ft/sec
3.50		103		94 200				
3.98	91	96	25.71					
4.98	90	92	25.62					
5.98	88	91	25.35					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

T	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
Location,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	Committons
L, ft	temper-	value	l - '	inside tube	temperature	across	heat-transfer	
π	•	of wall	P _g ,	1	correspond-	condensate	coefficient,	
	ature,	temper-	psia	area,	ing to	film,	· ·	
	t _k ,	-		q _i ,	-	1	h _{cl} ,	
,	^o F	ature,		Btu	pressure,	Δt _f ,	Btu	
		t _w ,		(hr)(ft ²)	t _{vs} ,	°F	(hr)(ft ²)(^o F)	
		°F			°F		<u></u>	
						Run 206		
-1.75			32.86		255.6			Test-fluid total flow rate, w _t , 63.4 lb/hr; coolant flow
-1.50			30.51					rate, w, 1250 lb/hr; vapor temperature upstream of
79			29.07					condenser measured at -1.75 ft, t _v , 257° F; con-
08			27.73					densate temperature at conderser exit measured at
. 03	132							8.50 ft, t_c , 106° F; test-fluid total mass velocity, G_t , $135000lb/(hr)(ft^2)$; coolant mass velocity, G_k ,
. 14		201	27.59	490 500	245.6	39.1	12 545	135 000 lb/(nr)(it); coolant mass velocity, G _k ,
. 50		196		420 000	245.7	45.0	9 333	1 469 000 lb/(hr)(ft ²); total condensing length, L _c ,
.98	108	186	27. 76	353 200	246.0	56.0	6 307	2.2 ft; overall friction-pressure change, ΔP_f , 3.98
1.50		171		295 900	246.3	72.0	4 110	psi; mean condensing heat-transfer coefficient, h _{cm} , 6510 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_g ,
1.98	90	150	28. 10	235 400	246.6	94.0	2 504	
2.00	"	100	20110					1.4° F; vapor quality at -0.08 ft, 0.99; heat balance
2. 25		137		178 200				error, -3.1 percent; vapor velocity at beginning of
2.98	82	90	28. 12					condensing portion of condenser, V _{vi} , 549 ft/sec
3.98	81	82	28. 19					
4.98	81	81	28. 20					
	·	J				Run 207	L	
-1. 75			32.52		255.0			Test-fluid total flow rate, w _t , 76.2 lb/hr; coolant flow
-1.50			29.09					rate, wk, 1730 lb/hr; vapor temperature upstream of
79			26.82					condenser measured at -1.75 ft, t _v , 259° F; con-
08			24. 61					densate temperature at condenser exit measured at
. 03	130							8.50 ft, t _c , 104 ⁰ F; test-fluid total mass velocity, G _t
	1	1						162 100 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		192	23.90	549 200	237. 6	39.4	13 939	2 030 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		188		481 000	237. 6	44.2	10 882	2.4 ft; overall friction-pressure change, ΔP_f , 6.64
.98	110	180	24.03	422 600	237. 9	53.1	7 958	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		167		335 000	238. 7	67.9	4 934	7380 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, Δt_{s} ,
1.98	95	150	24. 74	291 500	239.5	86. 2	3 382	4.0° F; vapor quality at -0.08 ft, 0.98; heat balance
2. 25		127		235 000	239.9	110.3	2 131	error, -2.4 percent; vapor velocity at beginning of
2. 50		121		188 300				condensing portion of condenser, V _{vi} , 731 ft/sec
2.98	87	96	25. 11	82 490				
3.98	86	87	25. 15	02 400				
4.98	85	87	25. 08					
7. 70		91	20.00					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	·
	t _k ,	temper-		q _i ,	ing to	film,	h _{cl} ,	
	o _F	ature,	1	Btu	pressure,	Δt _f ,	Btu	
	_	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(⁰ F)	
		o _F		(,(,	o _F	_		
	L	l	L	L,	l	Run 208	L	
1 25	T	T	00.40	1	254.0	1		G 5 h /h
-1.75			32.43		254.9			Test-fluid total flow rate, w _t , 80.5 lb/hr; coolant flow
-1.50			28.52					rate, w _k , 1730 lb/hr; vapor temperature upstream of
79			25.99					condenser measured at -1.75 ft, t _v , 260° F; con-
~. 08			23. 33					densate temperature at condenser exit measured at
. 03	133							\mid 8.50 ft, t _c , 105° F; test-fluid total mass velocity, G _t , \mid 171 300 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		193	22. 19	492 700	233.5	35.0	14 077	2 030 000 lb/(hr)(ft²); total condensing length, L _c ,
. 50		189		449 000	233.0	38.9	11 542	2.7 ft; overall friction-pressure change, ΔP_f , 8.65
. 98	114	181	21.97	406 800	233.0	46.4	8 767	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		170		344 000	233.5	59.6	5 772	7280 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, Δt_{s} ,
1.98	99	156	22.54	296 100	234.4	75.1	3 943	5.1° F; vapor quality at -0.08 ft, 0.98; heat balance
								error, -3.3 percent; vapor velocity at beginning of
2.50		137		237 300	235.5	95.8	2 477	condensing portion of condenser, V_{vi} , 813 ft/sec
2.98	88	114	23. 10	137 900				condensing portron of condensor, 'VI, 'VI',
3.98	87	89	23. 21					
4.98	87	87	23. 17					
						Run 209		
-1.75			32. 28		254.6			Test-fluid total flow rate, w _t , 86.1 lb/hr; coolant flow
-1.50			27.77					rate, wk, 1730 lb/hr; vapor temperature upstream of
79			24.65					condenser measured at -1.75 ft, t _v , 261° F; con-
08			21.13					densate temperature at condenser exit measured at
. 03	137							8.50 ft, t _c , 109° F; test-fluid total mass velocity, G _t
. 14		190	18.95	395 500	225.1	30.6	12 925	183 500 lb/(hr)(ft ²); coolant mass velocity, G _k , 2 030 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	120	181	17.57	372 900	221.2	36.0	10 358	
1.98	105	164	17.60	333 200	221.4	53.7	6 205	3.1 ft; overall friction-pressure change, ΔP_f , 13.04
2. 25		158		322 000	221.9	60.6	5 313	psi; mean condensing heat-transfer coefficient, h _{cm} , 8140 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_g ,
2.50		152		308 500	222.7	77. 2	3 996	6.4° F; vapor quality at -0.08 ft, 0.98; heat balance
		Ì	1	Ì				error, -3.1 percent; vapor velocity at beginning of
2. 75		144		290 400	223.4	76.1	3 816	condensing portion of condenser, V _{vi} , 948 ft/sec
2.98	91	135	18.52	204 500				Controlled by Controlled to All And In the International Controlled to the International Contr
3.50		125		77 290				
3.98	89	92	18.69					
4.98	87	89	18.60					
5.98	86	88	18.63					

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	Ps,	inside tube	temperature	across	heat-transfer	•
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q _i ,	ing to	film,	h_{cl} ,	
	° _F	ature,	1	Btu	pressure,	Δt _f ,	Btu	
		t _w ,		(hr)(ft ²)	t _{vs} ,	° _F	(hr)(ft ²)(^O F)	
		^o F			°F			
	L -	L		<u> </u>		Run 212	<u> </u>	
-1.75			24.02		237. 9			Test-fluid total flow rate, w _t , 45.4 lb/hr; coolant flow
-1.50			22.63					rate, w., 655 lb/hr; vapor temperature upstream of
79			21.72					rate, w_k , 655 lb/hr; vapor temperature upstream of condenser measured at -1.75 ft, t_v , 242° F; con-
08			20.81					densate temperature at condenser exit measured at
. 03	146							8.50 ft, t _c , 120° F; test-fluid total mass velocity, G _t ,
								96 600 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		203	20.69	223 000	229.8	24. 3	9177	769 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		200		217 000	229.6	27. 1	8007	2.9 ft; overall friction-pressure change, ΔP_f , 3.01
. 99	121	194	20. 70	209.000	229.8	33. 4	6257	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		185		195 000	228.8	41.6	4688	4990 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_g ,
1.98	101	173	20.80	177 500	230.0	55.0	3227	4.1° F; vapor quality at -0.08 ft, 0.99; heat balance
2.50		152		163 000	230.0	76. 2	2139	error, -2.0 percent; vapor velocity at beginning of
2.98	80	132	20.76	84 100				condensing portion of condenser, V _{vi} , 511 ft/sec
3. 50		84			-			
3.98	77	79	20.62					
4.98	76	76	20.55					
5.98	75	76	20. 56					
7. 95	74							
	L					Run 213	1	
-1.75			23.91		237. 7			Test-fluid total flow rate, w _t , 51.5 lb/hr; coolant flow
-1.50			21.94					rate, w _b , 655 lb/hr; vapor temperature upstream of
79			20.69					condenser measured at -1.75 ft, t _v , 243° F; con-
08			19.44					densate temperature at condenser exit measured at
. 03	156							8.50 ft, t _c , 126° F; test-fluid total mass velocity, G
1.4		202	10.00	104 500	225.4	20.0	0000	109 800 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		203	19.06	194 500	225.4	20. 2	9629	769 000 lb/(hr)(ft ²); total condensing length, L_c ,
.98	134	194	18.76	193 500	224.6	28. 4	6813	3.6 ft; overall friction-pressure change, ΔP_f , 4.89
1.98	115	183	18.48	185 000	223. 8	38. 7	4780	psi; mean condensing heat-transfer coefficient, hcm,
2.50		176		176 000	223.7	45.7	3851	5480 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, Δt_{s} ,
2.98	92	168	18.48	168 500	223.8	53.9	3126	5.3° F; vapor quality at -0.08 ft, 0.99; heat balance
3.50		154		120 000	224.1	68.8	1744	error, 1.0 percent; vapor velocity at beginning of
3.98	79	121	18.54	35 500				condensing portion of condenser, V _{vi} , 612 ft/sec
4.98	76	78	18.40					
5.98	74	77	18.50					
7.95	73							
	<u> </u>	L.,	<u> </u>	<u>l </u>		<u> </u>	1	

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-	_	q _i ,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	Δt _e ,	Btu	
	r	t _w ,	1	(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(^o F)	
		o _F		(nr)(It)	o _F	l r	(111)(11)(11)	
			<u>L</u>		F	<u> </u>		
						Run 215		
-1. 75			23.86		237.5			Test-fluid total flow rate, w _t , 56.4 lb/hr; coolant flow
-1.50			21.42					rate, wk, 830 lb/hr; vapor temperature upstream of
79			19.80					condenser measured at -1.75 ft, t, 242° F; con-
08			18. 11					densate temperature at condenser exit measured at
. 03	145							8.50 ft, t _c , 115° F; test-fluid total mass velocity, G _t ,
								120 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		195	17. 47	260 000	220.9	23.0	11 304	975 000 lb/(hr)(ft ²); total condensing length, \hat{L}_c ,
. 98	124	188	17. 22	222 000	220. 2	29. 7	7 475	3.4 ft; overall friction-pressure change, ΔP_f , 6.15
1.98	106	174	17.00	207 000	219.6	43. 3	4 781	psi; mean condensing heat-transfer coefficient, hcm,
2.50		163		207 000	219.6	54. 3	3 812	6060 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, Δt_{s} ,
2.98	86	150	17.08	168 000	219.8	67.9	2 474	4.5° F; vapor quality at -0.08 ft, 0.99; heat balance
3. 25		141		96 400	220.0	77.9	1 237	error, 0 percent; vapor velocity at beginning of
3. 50		131		87 700				condensing portion of condenser, V _{vi} , 729 ft/sec
3.98	77	103	17.15					
4.98	76	77	17.10					
5.98	74	77	17.22					
7.95	73							
-	٠			J	ļ	Run 216		
-1. 75		Ī	23.94		238. 7	T		Test-fluid total flow rate, w _t , 58.2 lb/hr; coolant flow
-1.50			21.47		200.1			rate, w _k , 830 lb/hr; vapor temperature upstream of
79			19.76					condenser measured at -1.75 ft, t _v , 243° F; con-
08			17.98					densate temperature at condenser exit measured at
. 03	147							8.50 ft, t_c , 111° F; test-fluid total mass velocity, G_t
	1 1 1							124 000 lb/(hr)(ft ²); coolant mass velocity, G_k ,
. 14		196	17. 36	217 000	220.9	22.5	9 644	975 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	127	188	16.92	217 000	219.3	28.9	7 509	3.7 ft; overall friction-pressure change, ΔP_f , 6.89
1.98	109	174	16.60	207 000	218.3	42.0	4 928	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.50		170		196 000	218.1	45.9	4 270	5650 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, Δt_{s} ,
2.98	88	157	16.55	191 000	218.1	58.9	3 243	4.3° F; vapor quality at -0.08 ft, 0.99; heat balance
2 05		150		125 500	210 2	64.8	2 091	error, 0 percent; vapor velocity at beginning of
3. 25		152		135 500	218.3	l .	1 398	condensing portion of condenser, V _{vi} , 755 ft/sec
3.50		143	10.50	103 900	218. 5	74.3		V1
3.98	78	89	16.78					
4.98	76	77	16. 79					
5.98	74	77	16.91					
7.95	73	77						

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	Pg,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q,	ing to	film,	h _C ,	
	o _F	ature,		Btu	pressure,	$\Delta t_{\mathbf{f}}$,	Btu	
	r	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(°F)	
		o _F		(11)(11)	o _F	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	L		l	L	L			
						Run 217		
-1.75			23.84		237. 5			Test-fluid total flow rate, wt, 60.0 lb/hr; coolant flow
-1.50			21.12					rate, wk, 830 lb/hr; vapor temperature upstream of
79			19. 21					condenser measured at -1.75 ft, t _v , 244° F; con-
08			17.18					densate temperature at condenser exit measured at
. 03	149							8.50 ft, t_c , 104° F; test-fluid total mass velocity, G_t ,
• • •		105	16.00	999 000	215 2	10.0	11 010	127 800 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14 . 98	130	195 187	16. 29	222 000 197 000	217. 3 215. 0	19.8 25.8	11 212 7 636	975 000 lb/(hr)(ft ²); total condensing length, L_c ,
			15.60	194 000	1	1		4.3 ft; overall friction-pressure change, ΔP_f , 8.04
1.98	113	175	14.90	l	212.7	35.5	5 465	psi; mean condensing heat-transfer coefficient, h _{cm} .
2.98	93	159	14. 76	190 000	212. 2	51.1	3 718	5340 Btu/(hr)(ft ²)(^O F); vapor state at -1.75 ft, Δt _s ,
3. 50		147		124 500	212. 8	64. 4	1 933	6.5° F; vapor quality at -0.08 ft, 0.98; heat balance
3.75		139		103 000	213. 2	73.0	1 410	error, 0 percent; vapor velocity at beginning of
3.98	81	130	15. 20	84 500	213.7	82.8	1 021	condensing portion of condenser, V _{vi} , 785 ft/sec
4. 25		118		66 000				
4.98	76	80	15.18					
5.98	74	79	15.10					
7.95	73							
···	I	<u></u>				Run 219		
-1.75			24. 76		239.6			Test-fluid total flow rate, w _t , 30.5 lb/hr; coolant flow
-1.50			24.16					rate, w., 1642 lb/hr; vapor temperature upstream of
79			23.79					condenser measured at -1.75 ft, t _v , 239° F; con-
08			23.41					densate temperature at condenser exit measured at
.03	94							
								8.50 ft, t _c , 98° F; test-fluid total mass velocity, G _t , 64 900 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		166	23.60	479 000	236.9	65.5	7 313	1 930 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 25		163		449 000	237.0	68.9	6 517	1.1 ft; overall friction-pressure change, ΔP_f , 0.52
. 50		154		348 000	237. 3	79. 4	4 383	psi; mean condensing heat-transfer coefficient, hem,
. 75		141		266 000	237. 6	93.6	2 842	4400 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, satu-
. 98	79	116	23.99	196 000	237. 8	119.6	1 639	rated; vapor quality at -0.08 ft, 1.00; heat balance
1. 25		106		151 000				error, -7.1 percent; vapor velocity at beginning of
1.98	75	77	23.87					condensing portion of condenser, V _{vi} , 313 ft/sec
2.98		75	23. 81					
3.98		75	23.88					
7.95	75							

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

							,	
Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q _i ,	ing to	film,	h _{cl} ,	
	$^{\mathrm{o}}\mathbf{F}$	ature,		Btu	pressure,	Δt_{f} ,	Btu	
		t _w ,		(hr)(ft ²)	t _{vs} ,	° _F	(hr)(ft ²)(⁰ F)	
		$^{\mathrm{o}}\mathbf{F}$			° _F			
			l			Run 220	l	
-1.75			24. 45		238. 7			Test-fluid total flow rate, w _t , 40.9 lb/hr; coolant flow
-1.50			23. 31					rate, wk, 1642 lb/hr; vapor temperature upstream of
79			22.57					condenser measured at -1.75 ft, t _w , 247° F; con-
08			21.87					densate temperature at condenser exit measured at
. 03	103							8.50 ft, t _c , 1090 F; test-fluid total mass velocity, G _t ,
. 14		172	22.04	640 000	233. 2	54.0	11 852	87 200 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		169	22.04	560 000	233. 2	58.4	9 589	1 930 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		160		393 000	234. 2	69.8	5 630	1.5 ft; overall friction-pressure change, ΔP_f , 1.45
. 75		151		288 000	234. 2	80.4	3 582	psi; mean condensing heat-transfer coefficient, h _{cm} ,
. 98	85	140	22. 71	225 000	234.8	92.3	2 438	5170 Btu/(hr)(ft ²)(^O F); vapor state at -1.75 ft, Δt _s ,
. 50	00	140	22.11	225 000	204.0	"""	2 100	8.1° F; vapor quality at -0.08 ft, 1.00; heat balance
1.25		128		167 500	235.0	105.1	1 594	error, -7.7 percent; vapor velocity at beginning of
1.50		115		126 000				condensing portion of condenser, V _{vi} , 446 ft/sec
1.75		100		101 400				·
1.98	79	85	22.66				-	
2.98	78	77	22.62			-		
3.98		77	22.69					
7.95	78							
	···					Run 221		
-1. 75			24. 30		238. 5			Test-fluid total flow rate, w _t , 45.0 lb/hr; coolant flow
-1.50			22.88					rate, wk, 1642 lb/hr; vapor temperature upstream of
79			22.09					condenser measured at -1.75 ft, t _v , 251° F; con-
08			21.08					densate temperature at condenser exit measured at
. 03	107							8.50 ft, t _c , 110° F; test-fluid total mass velocity, G _t , 95 900 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		176	21.14	560 000	230.9	48.6	11 523	95 900 lb/(hr)(ft"); coolant mass velocity, G _k ,
. 14		166	21.14	416 000	230.9	61.4	6 775	1 930 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	89	148	21.85	322 000	232. 7	81.1	3 970	1.6 ft; overall friction-pressure change, ΔP_f , 2.01
1. 25		137	21.80	214 500	232. 1	93.4	2 297	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		126		173 000	233.0	105.0	1 648	5560 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt _s ,
1.00		120		1.5 000	200.0	130.0	- 5.5	12.5° F; vapor quality at -0.08 ft, 1.00; heat balance
1.75		112		134 000				error, -5.7 percent; vapor velocity at beginning of
1.98	81	99	21.92	103 800				condensing portion of condenser, V _{vi} , 507 ft/sec
2.98	79	79	21.87					
3.98		79	21.90					
7.95	79							

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q _i ,	ing to	film,	h _{cℓ} ,	
	o _F	ature,		Btu	pressure,	Δt _f ,	Btu	
	-	t _w ,		(hr)(ft ²)	t _{vs} ,	° _F	(hr)(ft ²)(^O F)	
		o _F		' ' '	o _F			
		1	L	L		Run 222	L	
-1.75			23.97		237. 7			Test-fluid total flow rate, w _t , 53.9 lb/hr; coolant flow
-1.50			21.70					rate, w., 1642 lb/hr; vapor temperature upstream of
79			20. 22					condenser measured at -1.75 ft, t _v , 254° F; con-
08			18.73					densate temperature at condenser exit measured at
. 03	115							8.50 ft, t_c , 110° F; test-fluid total mass velocity, G_t ,
. 14		170	10.44	515 000	223. 7	39.9	12 907	114 800 lb/(hr)(ft ²); coolant mass velocity, G _k ,
		178	18.44	427 000	223. 7	49.1	8 696	1 930 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50 . 98	96	171 160	19. 30	320 000	224.9	62.4	5 128	2.1 ft; overall friction-pressure change, ΔP_f , 3.42
1.50		145	19. 30	241 000	226.6	78.9	3 054	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.75		135		181 000	227. 2	90.2	2 007	5800 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, Δt_s ,
1. 75		135		181 000	221.2	50.2	2 001	16.3° F; vapor quality at -0.08 ft, 0.99; heat balance
1.98	85	123	19.81	131 000	227.5	103.0	1 272	error, -3.0 percent; vapor velocity at beginning of
2.25		107		94 000				condensing portion of condenser, V _{vi} , 652 ft/sec
2.98	82	82	19.65					
3.98	81	81	19.70					
7. 95	81							
						Run 223		
-1. 75			23.79		237. 3			Test-fluid total flow rate, wt, 61.4 lb/hr; coolant flow
-1.50			20.75					rate, wk, 1642 lb/hr; vapor temperature upstream of
79			18.57					condenser measured at -1.75 ft, t _v , 256° F; con-
08			16.18					densate temperature at condenser exit measured at
. 03	121							8.50 ft, t _c , 108° F; test-fluid total mass velocity, G _t
. 14		177	15.36	479 000	214.2	31.8	15 063	130 800 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 50		172		416 000	214.8	38. 1	10 919	1 930 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	103	164	15.92	350 000	216.1	48.2	7 261	2.3 ft; overall friction-pressure change, ΔP_f , 6.14
1.50		153		292 000	217.4	61.1	4 779	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.75		146		259 500	218.1	69.2	3 750	7380 Btu/(hr)(ft²)(°F); vapor state at -1.75 ft, Δt_s ,
2							1	18.7° F; vapor quality at -0.08 ft, 0.99; heat balance
1.98	90	138	16.73	228 000	218. 7	78.1	2 919	error, -2.8 percent; vapor velocity at beginning of
2. 25		129		197 500	219.0	87.8	2 249	condensing portion of condenser, V _{vi} , 872 ft/sec
2.50		117		163 000				
2.98	83	88	16.85					
9 00	83	83	16.86					1
3.98	"					1		

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	Collections
_, ft	temper-	value	P _g ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q,	ing to	film,	h _{cl} ,	
	o _F	ature,		Btu	pressure,	Δt_{r} ,	εί, Btu	
	F	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(^o F)	
	!	o _F		(1117)(111)	o _F	r	(ar)(it)(F)	
			L	L		Run 224	L	
	1		г		г	T		<u> </u>
-1.75			31. 75		253.7			Test-fluid total flow rate, w _t , 74.6 lb/hr; coolant flow
-1.50			28. 36					rate, w _k , 1642 lb/hr; vapor temperature upstream of
79			26. 28					condenser measured at -1.75 ft, t _v , 262° F; con-
08			24. 21					densate temperature at condenser exit measured at
. 03	131							8.50 ft, t_c , 104° F; test-fluid total mass velocity, G_t
. 14		192	23. 55	533 000	236. 7	38.7	13 773	159 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 50		188	20.00	470 000	236.6	43.3	10 854	1 930 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	111	179	23. 73	410 000	237. 2	53.6	7 649	2.4 ft; overall friction-pressure change, ΔP_f , 6.53
1.50		167		334 000	238.0	67.2	4 970	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.98	95	152	24.44	269 000	238.8	83.8	3 210	7000 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_{s} ,
	""	102		-05	200.0	30.0	0 210	8.3° F; vapor quality at -0.08 ft, 0.99; heat balance
2. 25		142		232 000	239.2	94.6	2 452	error, -4.4 percent; vapor velocity at beginning of
2.50		130		177 000				condensing portion of condenser, V _{vi} , 736 ft/sec
2.98	87	95	24. 75					
3.98	86	87	24. 74					
4.98	85	86	24. 70					
7.95	84							
						Run 225		
-1.75			33. 83		257. 3			Test-fluid total flow rate, w _t , 55.3 lb/hr; coolant flow
-1.50			32.06					rate, w, 1725 lb/hr; vapor temperature upstream of
79			31.09					condenser measured at -1.75 ft, t _v , 258° F; con-
08			30.09					densate temperature at condenser exit measured at
. 03	117							8.50 ft, t _c , 112° F; test-fluid total mass velocity, G _t
. 14		189	30.13	706 000	250.5	53.5	13 196	117 900 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 50		180		450 000	251.2	66.1	6 808	2 025 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	97	164	30. 78	320 000	251.7	84.1	3 805	1.6 ft; overall friction-pressure change, ΔP_f , 2.28
1. 25		154		275 000	251.8	94.7	2 904	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		142		232 000	252.0	107.4	2 160	6330 Btu/(hr)(ft²)(°F); vapor state at -1.75 ft, Δt _s ,
		}						0.7° F; vapor quality at -0.08 ft, 0.99; heat balance
1. 75		127		186 000				error, -4.8 percent; vapor velocity at beginning of
1.98	87	110	30.89	132 000				condensing portion of condenser, V _{vi} , 444 ft/sec
2.98	85	85	30. 75					
3.98	85	85	30.88					
4.98	85		30.99					
7.95	84							

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q,	ing to	film,	h _{cℓ} ,	
	o _F	ature,		Btu	pressure,	Δt _f ,	Btu	
	•	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(^O F)	
		o _F		()()	o _F	_	, (-) (-)	
	1			I	l	Run 226	I	
-1.75	T		23.49		236.6			Test-fluid total flow rate, w _t , 45.0 lb/hr; coolant flow
-1.50			22.00					rate, w, 1805 lb/hr; vapor temperature upstream of
79			21.04					rate, w _k , 1805 lb/hr; vapor temperature upstream of condenser measured at -1.75 ft, t _v , 239° F; con-
08			20.07					densate temperature at condenser exit measured at
.03	109							8.50 ft, t _c , 116° F; test-fluid total mass velocity, G _t ,
. 14		172	20, 19	529 000	228. 4	50.4	10 496	95 900 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 50		163	20.15	419 000	229.7	62.0	6 758	2 120 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	94	147	20.93	281 000	230. 3	80.1	3 503	1.7 ft; overall friction-pressure change, ΔP_f , 2.01
1. 25		137	20.55	211 000	230. 6	91.2	2 314	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.50		126		151 000	230.7	103.0	1 466	5000 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, Δt_s ,
1.00		120	10000	131 000	230.1	100.0	1 100	2.6° F; vapor quality at -0.08 ft, 0.99; heat balance
1.98	86	100	21.01	80 300				error, -6.6 percent; vapor velocity at beginning of
2.98	84	84	21.02					condensing portion of condenser, V _{vi} , 524 ft/sec
7. 95	84							
						Run 227		
-1.75			26. 71		243. 8			Test-fluid total flow rate, w _t , 61.2 lb/hr; coolant flow
-1.50			24. 15					rate, wk, 1805 lb/hr; vapor temperature upstream of
79			22.38					condenser measured at -1.75 ft, t _v , 249° F; con-
08			20.73					densate temperature at condenser exit measured at
. 03	121							8.50 ft, t _c , 110° F; test-fluid total mass velocity, G _t , 130 200 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		181	20.43	495 000	229. 1	42.5	11 647	2 120 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 50		177		430 000	230. 2	48. 3	8 903	2.3 ft; overall friction-pressure change, ΔP_f , 4.37
. 98	104	167	21. 25	354 000	231.2	60.2	5 880	psi; mean condensing heat-transfer coefficient, h _{cm} ,
1.25		161		314 000	231.6	67.1	4 680	5780 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, $^{\circ}$ Δt _s ,
1.50		153		278 000	232.0	75.9	3 663	5.1° F; vapor quality at -0.08 ft, 0.99; heat balance
1.75		143		252 000	232. 2	86.4	2 917	error, -6.7 percent; vapor velocity at beginning of
1.98	92	131	21.75	182 000	232.5	99.4	1 831	condensing portion of condenser, V _{vi} , 694 ft/sec
2.25		117		126 500				
		89	21.76		1			
2.98	88							

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-	İ	q _i ,	ing to	film,	h _{c/} ,	
	o _F	ature,		Btu	pressure,	Δt_f	Bhu	
		t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(^o F)	
		°F	1	(11)(11)	°F	1	(111/(11)(1)	
	L	L	 	L_,	<u> </u>	Run 228		
-1. 75	T		32.02		254, 2	T		Test-fluid total flow rate, w _t , 67.9 lb/hr; coolant flow
-1.50		ì	29.48					rate, wk, 1805 lb/hr; vapor temperature upstream of
79			27.89					condenser measured at -1.75 ft, t _v , 254 ^o F; con-
08			26.07					densate temperature at condenser exit measured at
. 03	126							8.50 ft, t _c , 108° F; test-fluid total mass velocity, G
								144 500 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		190	25.92	547 000	242.1	45.9	11 917	2 120 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 50		185		476 000	242.7	52.3	9 101	2.2 ft; overall friction-pressure change, ΔP_f , 4.47
. 98	107	174	26.53	380 000	243.5	65.2	5 828	psi; mean condensing heat-transfer coefficient, hem
1.25		167		342 000	243.8	73.0	4 685	5930 Btu/(hr)(ft ²)(^o F); vapor state at -1.75 ft, satu-
1.50		158		300 000	244.0	82.6	3 632	rated; vapor quality at -0.08 ft, 0.99; heat balance
1. 75		148		269 000	244.3	93.3	2 883	error, -6.7 percent; vapor velocity at beginning of
1.98	94	136	27.04	216 000	244.5	106.1	2 036	condensing portion of condenser, V _{vi} , 624 ft/sec
2. 25		121		173 000				
2.98	89	92	27. 35					
3.98	89	89	27. 16					
7.95	88							
	+ ··	L	.L	L		Run 229	<u> </u>	
-1.75			36.46		261. 7			Test-fluid total flow rate, w _t , 72.5 lb/hr; coolant flo
-1.50			33.86					rate, wk, 1805 lb/hr; vapor temperature upstream o
79			32.34					condenser measured at -1.75 ft, t _v , 261° F; con-
08			30.60					densate temperature at condenser exit measured at
. 03	130							8.50 ft, t _o , 107° F; test-fluid total mass velocity, G
. 14		198	30.40	649 000	251. 2	45.9	14 139	154 500 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 50		191	30. 40	516 000	251.3	54.5	9 468	2 120 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	109	179	30. 86	413 000	251.8	68. 2	6 056	2.2 ft; overall friction-pressure change, ΔP_f , 4.47
1. 25		171		344 000	252. 4	77.5	4 439	psi; mean condensing heat-transfer coefficient, h _{cm} 6520 Btu/(hr)(ft ²)(^O F); vapor state at -1.75 ft, satu-
1.50		162		307 000	252.6	87.1	3 525	1
								rated; vapor quality at -0.08 ft, 0.99; heat balance error, -6.0 percent; vapor velocity at beginning of
1.75		151		271 000	252. 8	98.8	2 743	condensing portion of condenser, V _{vi} , 573 ft/sec
1.98	96	139	31.45	240 000	253.2	111.5	2 150	, vi
2. 25		123		188 500				
2.98	90	94	31.59					
3.98	90	91	31.67					
7. 95	89							L

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-		q,	ing to	film,	h _{c/} ,	
	o _F	ature,		Btu	pressure,	Δt _f ,	Btu	
	1	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(⁰ F)	
	1	o _F		(/(/	o _F		[`	
	L	L	.			Run 233	l	
	T	1	Γ	I			1	
-1.75			40.59		268. 1			Test-fluid total flow rate, w _t , 104.8 lb/hr; coolant flow
-1.50			34. 59					rate, wk, 1844 lb/hr; vapor temperature upstream of
79			31.15					condenser measured at -1.75 ft, t _v , 268° F; con-
08			27.27					densate temperature at condenser exit measured at
. 03	150							8.50 ft, t_c , 120° F; test-fluid total mass velocity, G_t , $223\ 000\ lb/(hr)(ft^2)$; coolant mass velocity, G_k ,
. 14		203	25.33	425 000	240.9	33. 1	12 840	2 165 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	133	193	23.10	406 000	235.7	38. 1	10 656	3.7 ft; overall friction-pressure change, ΔP_f , 15.67
1.98	118	179	22.54	383 000	234.4	51.1	7 495	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.50		169		366 000	235.1	62.0	5 903	7550 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, satu-
2.98	102	154	23.40	220 000	236.4	79.9	2 753	rated; vapor quality at -0.08 ft, 0.98; heat balance
				101 000	007.0	00.0		error, -4.8 percent; vapor velocity at beginning of
3. 25	97	145		161 000	237.0	90.2	1 785	condensing portion of condenser, V _{vi} , 914 ft/sec
3.98	95	101 96	23.96 24.26					,
4.98 7.95	93		24.20]		
- 1.00		1						
		,	T	T	,	Run 234	T	
-1.75			39.99		267.2			Test-fluid total flow rate, w _t , 106.2 lb/hr; coolant flow
-1.50			34. 45					rate, wk, 1808 lb/hr; vapor temperature upstream of
79			30.82					condenser measured at -1.75 ft, t _v , 267° F; con-
08			26.80					densate temperature at condenser exit measured at
. 03	154							8.50 ft, t_c , 124° F; test-fluid total mass velocity, G_t , 226 500 lb/(hr)(ft ²); coolant mass velocity, G_k ,
. 14		203	24. 39	386 000	238.7	31.4	12 293	2 124 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 98	138	193	21.16	376 000	231.0	33. 8	11 124	4.1 ft; overall friction-pressure change, ΔP_f , 18.91
1.98	124	181	19.36	346 000	226. 3	41.4	8 357	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	108	165	19.79	270 000	227.4	59.4	4 545	7520 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, Δt_s ,
3.50		152		192 000	228.5	74.3	2 584	0.2° F; vapor quality at -0.08 ft, 0.98; heat balance
3. 75		141		165 000	229.0	86.2	1 914	error, -4.3 percent; vapor velocity at beginning of
3.75	100	127	20. 75	137 500	229.0	00. 2	1 914	condensing portion of condenser, V _{vi} , 943 ft/sec
3.98 4.98	98	99	20.75	13: 300				
5.98	97	99	20.77					
7.95	95		20.11					
		1	ļ	L	L			<u> </u>

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA.

Location.	Local	Local	Statio	Heat flux	Vanor	Tempera-	Local	Conditions
L,	coolant	Local faired	Static pressure,	based on	Vapor saturation	ture drop	condensing	Conditions
ft	temper-	value	•	inside tube	temperature	across	heat-transfer	
1	ature,	of wall	P _s ,	area.	correspond-	condensate	coefficient.	
	· ·		psia	[ing to	film,	1	
	t _k ,	temper-		q _i , Btu	pressure,	1	h _{cl} , Btu	
	°F	ature,				Δt _f ,		
		t _w ,		(hr)(ft ²)	t _{vs} , o _F	° F	(hr)(ft ²)(^o F)	
	<u></u>		L			Run 235	L	
	Γ	1		Γ				
-1.75			48. 20		278.6			Test-fluid total flow rate, w _t , 121.8 lb/hr; coolant flow
-1.50			42.16					rate, w _k , 1808 lb/hr; vapor temperature upstream of
79			38.54					condenser measured at -1.75 ft, t _v , 276° F; con-
08		}	34.75					densate temperature at condenser exit measured at
. 03	166							8.50 ft, t _c , 130° F; test-fluid total mass velocity, G _t ,
. 14		220	32.91	459 000	255. 7	30.5	15 049	269 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 98	148	210	30. 25	437 000	250. 9	36.0	12 139	2 124 000 lb/(hr)(ft ²); total condensing length, L _c ,
1.98	131	197	28. 84	404 000	248. 1	46.6	8 669	3.6 ft; overall friction-pressure change, ΔP_f , 18.00
2.98	113	178	29. 34	356 000	249.0	67.0	5 313	psi; mean condensing heat-transfer coefficient, h _{cm} ,
3. 25		170	20.04	290 000	249.5	76. 2	3 806	9250 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, x = 0.99;
0.20		1.0		250 000	240.0	10.2	5 000	vapor quality at -0.08 ft, 0.97; heat balance error,
3. 50		160		191 000	249.9	87. 7	2 178	-4.3 percent; vapor velocity at beginning of condensing
3. 75		145		130 000				portion of condenser, V _{vi} , 835 ft/sec
3.98	104	124	30.12					
4.98	102	103	30.04					
7.95	99							
						Run 236		
-1.75			48. 23		278. 7			Test-fluid total flow rate, w _t , 128.0 lb/hr; coolant flow
-1.50			41.71					rate, w, 1808 lb/hr; vapor temperature upstream of
79			37.63					condenser measured at -1.75 ft, t _v , 276° F; con-
08			33. 22					densate temperature at condenser exit measured at
. 03	168							8.50 ft, t_c , 134^0 F; test-fluid total mass velocity, G_t , 273 000 lb/(hr)(ft ²); coolant mass velocity, G_k ,
. 14		219	30.62	400 000	251.6	28. 1	14 235	2 124 000 lb/(hr)(tt ²); total condensing length, L _c ,
. 98	151	207	25.92	382 000	242.2	30.9	12 362	
1.98	138	192	21.72	365 000	232. 5	36.4	10 027	4.7 ft; overall friction-pressure change, ΔP _f , 25.76
2.98	120	178	20.73	300 000	229.9	48.5	6 186	psi; mean condensing heat-transfer coefficient, h_{cm} , 8350 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, x = 0.99;
3.75		162	+	251 000	232.6	67.8	3 702	vapor quality at -0.08 ft, 0.97; heat balance error,
								-5.0 percent; vapor velocity at beginning of condensing
3.98	109	153	22.01	228 000	232. 2	77.6	2 938	portion of condenser, V _{vi} , 919 ft/sec
4. 25		143		205 000	234.0	88.7	2 311	portion of condenser, vii, or it, see
4.50		130		181 000				
4.98	103	106	22.75					
5.98	100	103	22. 88					
7.95	99							

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

	Taggl	Local	Static	Heat flux	Vanor	Tompore	Local	Conditions
Location,	Local coolant	faired	pressure,	based on	Vapor saturation	Tempera- ture drop	condensing	Committons
L,		value] * ·		l .		heat-transfer	
ft	temper-		P _s ,	inside tube	temperature	across	coefficient,	
	ature,	of wall	psia	area,	correspond-	condensate	1 '	
	t _k ,	temper-	Ì	q _i ,	ing to	film,	h _{cl} , Btu	
	°F	ature,		Btu	pressure,	$\Delta t_{\mathbf{f}}$,		
		t _w ,		(hr)(ft ²)	t _{vs} ,	°F	(hr)(ft ²)(^o F)	
		°F			°F		1	
						Run 237		
-1. 75			34. 88		259.0			Test-fluid total flow rate, w _t , 83.4 lb/hr; coolant flow
-1.50			31. 20					rate, w _k , 950 lb/hr; vapor temperature upstream of
79			28. 87					condenser measured at -1.75 ft, t _v , 257° F; con-
08			26.54					densate temperature at condenser exit measured at
. 03	171							8.50 ft, t _c , 120° F; test-fluid total mass velocity, G _t ,
. 00	* ' *			}				177 500 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		218	25.54	276 000	241.3	20. 2	13 663	1 116 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	151	209	23.96	260 000	237. 7	25.8	10 077	4.4 ft; overall friction-pressure change, ΔP_f , 11.99
1.98	133	199	22.46	242 000	234. 2	32.5	7 446	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	110	184	21.75	223 000	232.5	46.0	4 848	7020 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, $x = 0.99$;
3. 75		165		181 500	233. 3	66. 2	2 742	vapor quality at -0.08 ft, 0.97; heat balance error,
3.98	94	156	22.59	158 100	234.5	76.7	2 061	0 percent; vapor velocity at beginning of condensing
4. 25		145		133 200	234.6	88. 1	1 512	portion of condenser, V _{vi} , 762 ft/sec
4.50		131		105 500				
4.98	86	90	22.55					
5.98	82	90	22.62					
7. 95	81							
	L	_			1	Run 238	1	
	Τ	1	40.01		1			The state of the s
-1. 75			40.81		268.4			Test-fluid total flow rate, w_t , 90.5 lb/hr; coolant flow rate, w_k , 950 lb/hr; vapor temperature upstream of
-1.50			37.16					condenser measured at -1.75 ft, t _v , 267° F; con-
79			34.97					densate temperature at condenser exit measured at
08			32.82					
. 03	181							8.50 ft, t _c , 124° F; test-fluid total mass velocity, G _t , 193 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		229	31.88	278 000	253.9	21.7	12 811	1 116 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 98	160	220	30.40	275 000	251.2	28. 1	9 786	
1.98	139	208	28.99	267 000	248. 4	37.4	7 139	4.5 ft; overall friction-pressure change, ΔP_f , 11.47 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$,
2.98	114	192	28. 44	260 000	247.4	52.5	4 952	psi; mean condensing neat-transfer coefficient, n_{cm} , 6700 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, x = 0.99
3. 75		169		219 000	248. 1	76.6	2 859	vapor quality at -0.08 ft, 0.98; heat balance error,
								-1.3 percent; vapor velocity at beginning of condensing
3.98	107	158	29.00	147 500	248.4	88.7	1 663	nontion of condensor V 678 ft/sec
4. 25		144		114 000				portion of condenser, V _{vi} , 678 ft/sec
4.50		127		93 400				
4.98	89	96	29. 16					
5.98	85	92	29.16					
7.95	82							+

TABLE I. - Continued. EXPERIMENTAL AND COMPUTED DATA

Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
coolant	faired	pressure,	based on	saturation	ture drop	condensing	
		, -		i	across	_	
			area,	correspond-	condensate	coefficient,	
		F	· '	_	film,		·
	_			"	Δt _e ,	εί΄ Btu	
· F				l			
			(hr)(it)		_ F	(nr)(it)(r)	
	J.	<u> </u>					
					Run 239		
		23.77		237. 3			Test-fluid total flow rate, w _t , 32.9 lb/hr; coolant flow
		23. 10					rate, w _k , 830 lb/hr; vapor temperature upstream of
		22. 71					condenser measured at -1.75 ft, t _v , 235° F; con-
		22. 26					densate temperature at condenser exit measured at
103							8.50 ft, t _c , 87° F; test-fluid total mass velocity, G _t ,
	.100	00.01	454 000	000 6	40 5	10 600	70 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
ŀ					1		975 000 lb/(hr)(ft ²); total condensing length, L _c ,
				1	1		1.8 ft; overall friction-pressure change, ΔP _f , 1.09
		1	1				psi; mean condensing heat-transfer coefficient, h _{cm} ,
	1	1	Į.	Į.	Į.	1	3990 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, x = 0.998
	135		123 000	234.6	90.2	1 252	vapor quality at -0.08 ft, 0.995; heat balance error,
	121		90 400				-4.3 percent; vapor velocity at beginning of condensing
65	104	22.60					portion of condenser, V _{vi} , 352 ft/sec
	68						
63	64	22. 51					
62	62	22.54					
61							
•					Run 240		
		49.29		280.0			Test-fluid total flow rate, w _t , 130.5 lb/hr; coolant flow
		42.54					rate, wk, 1855 lb/hr; vapor temperature upstream of
		38. 20					condenser measured at -1.75 ft, t _v , 277° F; con-
		33. 38					densate temperature at condenser exit measured at
162							8.50 ft, t_c , 131° F; test-fluid total mass velocity, G_t ,
	1			251.0		14 286	278 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
1				251.0	30.1	14 280	10 400 000 11 /6 \/(1/6\)
	216	30.27	430 000		0.5	19 00#	2 180 000 lb/(hr)(ft ²); total condensing length, L _c ,
145	203	24.67	412 000	239.3	31.7	12 997	4.8 ft; overall friction-pressure change, ΔP _f , 31.91
145 131	203 187	24. 67 18. 10	412 000 366 000	239.3 222.8	31.7	11 546	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, h _{cm} ,
145 131 115	203 187 169	24. 67 18. 10 13. 78	412 000 366 000 303 000	239.3 222.8 208.7	31.7 36.3	11 546 8 347	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$, 9210 Btu/(hr)(ft ²)(°F); vapor state at -1.75 ft, x = 0.99;
145 131	203 187	24. 67 18. 10	412 000 366 000	239.3 222.8	31.7	11 546	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$, 9210 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, x = 0.99; vapor quality at -0.08 ft, 0.97; heat balance error,
145 131 115	203 187 169	24. 67 18. 10 13. 78	412 000 366 000 303 000	239.3 222.8 208.7	31.7 36.3	11 546 8 347	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$, 9210 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, x = 0.99; vapor quality at -0.08 ft, 0.97; heat balance error, -0.6 percent; vapor velocity at beginning of condensing
145 131 115 104	203 187 169 152	24.67 18.10 13.78 15.80	412 000 366 000 303 000 248 000	239. 3 222. 8 208. 7 215. 6	31. 7 36. 3 60. 8	11 546 8 347 4 079	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$, 9210 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, x = 0.99; vapor quality at -0.08 ft, 0.97; heat balance error,
145 131 115 104	203 187 169 152	24. 67 18. 10 13. 78 15. 80	412 000 366 000 303 000 248 000 230 000	239. 3 222. 8 208. 7 215. 6	31. 7 36. 3 60. 8 66. 7	11 546 8 347 4 079 3 448	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$, 9210 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, x = 0.99; vapor quality at -0.08 ft, 0.97; heat balance error, -0.6 percent; vapor velocity at beginning of condensing
145 131 115 104	203 187 169 152 148 141 128	24. 67 18. 10 13. 78 15. 80	412 000 366 000 303 000 248 000 230 000 205 000	239. 3 222. 8 208. 7 215. 6	31. 7 36. 3 60. 8 66. 7	11 546 8 347 4 079 3 448 2 712	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$, 9210 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, x = 0.99; vapor quality at -0.08 ft, 0.97; heat balance error, -0.6 percent; vapor velocity at beginning of condensing
145 131 115 104	203 187 169 152 148 141	24. 67 18. 10 13. 78 15. 80	412 000 366 000 303 000 248 000 230 000 205 000 178 000	239. 3 222. 8 208. 7 215. 6	31. 7 36. 3 60. 8 66. 7	11 546 8 347 4 079 3 448 2 712	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$, 9210 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, x = 0.99; vapor quality at -0.08 ft, 0.97; heat balance error, -0.6 percent; vapor velocity at beginning of condensing
145 131 115 104 95	203 187 169 152 148 141 128 102	24. 67 18. 10 13. 78 15. 80	412 000 366 000 303 000 248 000 230 000 205 000 178 000	239. 3 222. 8 208. 7 215. 6	31. 7 36. 3 60. 8 66. 7	11 546 8 347 4 079 3 448 2 712	4.8 ft; overall friction-pressure change, ΔP_f , 31.91 psi; mean condensing heat-transfer coefficient, $h_{\rm cm}$, 9210 Btu/(hr)(ft ²)(0 F); vapor state at -1.75 ft, x = 0.99; vapor quality at -0.08 ft, 0.97; heat balance error, -0.6 percent; vapor velocity at beginning of condensing
		coolant temper- ature, tk, oF tw, oF	coolant temper- ature, of wall temper- ature, of wall temper- ature, tw, oF psia 23.77 23.10 23.10 22.71 186 22.21 177 22.51 186 22.21 177 22.51 186 22.21 177 22.51 186 22.51 60 22.51 186 22.51 22.51 22.51 186 22.51 189	coolant temper- ature, of wall temper- ature, of wall temper- ature, of wall temper- ature, tw, of wall temper- ature, the w	coolant temper-value ature, ature, oF faired yalue of wall temper- ature, tw, oF psia temper- ature, tw, oF based on inside tube area, qi, Btu (hr)(ft²) saturation temperature corresponding to pressure, tvs, oF 23.77 231.0 22.71 22.26 22.71 22.26 22.71 22.26 22.71 22.26 22.71 21.00 234.0 233.6 177 271 000 234.0 234.0 234.5 149 146 500 234.5 123 000 234.5 123 000 234.6 135 149 146 500 234.5 123 000 234.6 121 90 400 65 104 22.60 123 000 234.6 68 68 68 68	coolant temper- value ature, of wall temper- oF faired yalue pissare, p	Coolant temper value ature, two of wall temper ature, of wall temper ature, two of wall temper ature, two of wall temper ature, to of wall temper ature, two of wall temper ature, are as wall temper ature, are as wall temper ature, two of wall temper ature, are as wall temper ature, are as wall temper ature, are as wall temper ature, are as wall temper ature, are as wall temper ature, are as wall temper ature, are as wall temper ature, are as wall temper ature, are as wall temper ature, are as wall temper ature, are as wall to of the wall temper ature, are as wall temper ature, are as wall to of the wall temper ature, are as wall to of the wall temper ature, are as wall to of the wall temper ature, are as wall to of the wall temper ature, are as wall to of the wall temper ature, are as wall to of the wall temper ature, are as wall to of the wall temper ature, are as wall to of the wall temper ature, are as wall to of the wall temper at wall temper

TABLE I. - Concluded. EXPERIMENTAL AND COMPUTED DATA

Location,	Local	Local	Static	Heat flux	Vapor	Tempera-	Local	Conditions
L,	coolant	faired	pressure,	based on	saturation	ture drop	condensing	
ft	temper-	value	P _s ,	inside tube	temperature	across	heat-transfer	
	ature,	of wall	psia	area,	correspond-	condensate	coefficient,	
	t _k ,	temper-	,	q _i ,	ing to	film,	h _{cℓ} ,	
	o _F	ature,	1	Btu	pressure,	Δt_f ,	Btu	
	'	t _w ,		(hr)(ft ²)	t _{vs} ,	o _F	(hr)(ft ²)(^o F)	
		o _F		(nr)(it)	o _F	r	(nr)(1t)(F)	
		· F			- F			
						Run 241		
-1. 75	T		56. 13		288.4			Test-fluid total flow rate, w _t , 147.0 lb/hr; coolant flow
-1.50			48.92					rate, w., 1855 lb/hr; vapor temperature upstream of
79			44. 37					condenser measured at -1.75 ft, t _v , 285° F; con-
08		-	39. 34				 -	densate temperature at condenser exit measured at
.03	173							8.50 ft, t _c , 141° F; test-fluid total mass velocity, G _t ,
	-,,							312 500 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		226	36.18	423 000	261.2	30. 4	13 914	2 180 000 lb/(hr)(ft ²); total condensing length, L_c ,
. 98	155	211	29. 77	412 000	249.9	34. 3	12 012	5.5 ft; overall friction-pressure change, ΔP_f , 37.34
1.98	140	193	22. 26	383 000	233. 7	36.4	10 522	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	124	175	15.01	341 000	213.0	34. 2	9 971	8740 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, x = 0.99;
3.98	114	162	13. 82	275 500	208.9	43.8	6 290	vapor quality at -0.08 ft, 0.97; heat balance error,
								• • • • • • • • • • • • • • • • • • •
4.98	102	154	17.18	154 000	220. 1	64.4	2 391	0 percent; vapor velocity at beginning of condensing
5. 25		152		133 000	223.0	69.5	1 914	portion of condenser, V _{vi} , 894 ft/sec
5.48		137	18.76	116.800	224.6	86.3	1 353	
5. 75		106		104 800				
5.98	99	104	18.77					
6.48		102	18.65					
6.98	94	101	18. 75					
7.56	93	100						
7.95	93							
					+	Run 243		
-1.75	Ī		61. 20		294.0			Test-fluid total flow rate, w _t , 158.0 lb/hr; coolant flow
-1.50			52.96					rate, w., 1830 lb/hr; vapor temperature upstream of
79			48.02					condenser measured at -1.75 ft, t _v , 291° F; con-
08			39. 34					densate temperature at condenser exit measured at
. 03	180							8.50 ft, t _c , 151° F; test-fluid total mass velocity, G _t ,
				1	1			336 000 lb/(hr)(ft ²); coolant mass velocity, G _k ,
. 14		231	38.05	451 000	264. 2	28. 1	16 050	2 150 000 lb/(hr)(ft ²); total condensing length, L _c ,
. 98	162	217	32.97	428 000	255.8	34.0	12 588	6.6 ft; overall friction-pressure change, ΔP_f , 54.54
1.98	147	201	24. 99	369 000	240.0	34. 9	10 573	psi; mean condensing heat-transfer coefficient, h _{cm} ,
2.98	131	183	17. 17	294 000	220. 1	33. 8	8 698	9230 Btu/(hr)(ft ²)($^{\circ}$ F); vapor state at -1.75 ft, x = 0.99
3.98	121	165	10.95	221 000	197.6	30. 1	7 342	vapor quality at -0.08 ft, 0.96; heat balance error,
4.98	113	146	6. 76	186 000	175.3	27. 2	6 838	3.0 percent; vapor velocity at beginning of condensing
5.48			5.09					portion of condenser, V _{vi} , 952 ft/sec
5.98	105	126	4. 24	172 000	155.6	27. 7	6 209	"
6.48		124	3. 42	163 500	146.8	1	7 786	
6. 75		123	3. 42	142 500	140.8	21.0	7 786	
6.98	97	121	7. 36	124 500				
7. 25		115	11.86	101 500				
	95	103	11.91					
7.56	1							
7. 56 7. 95 8. 06	95							

TABLE II. - MEASURED WALL TEMPERATURE

Length,	,	Run																		
ft	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	181	185	187
		L							Tem	pera	ture,	o _F					<u> </u>	اا	-	
0.14	197	210	195	188	222	205	201	193	231	213	208	200	203	189	207	216	225	203	206	211
. 98	189	201	180	170	215	195	189	178	224	203	196	188	206	179	197	206	215	190	203	200
1.31	183	197	172	157	212	188	181	169	221	196	189	179	203	173	191	200	210	182	185	192
1.64	182	195	164	142	210	186	175	158	220	194	185	172	203	Í70	188	197	207	178	179	190
1.98	181	195	152	127	209	184	170	144	219	192	180	163	187	154	174	184	193	162	164	175
2. 31	175	187	131	101	205	174	153	123	215	182	169	145	199	161	179	189	199	165	165	182
2.64	170	183	115	83	200	163	134	97	211	172	151	126	195	155	172	182	193	156	156	175
2.98	167	180	82	82	201	154	123	87	211	165	141	103	195	154	170	181	192	154	153	175
3. 31	162	174	79	81	200	139	88	85	210	150	119	88	194	151	167	177	190	148	147	171
3. 31	148	158	77	80	189	126	86	84	200	135	107	87	186	141	156	167	178	137	134	152
3.64	145	154	77	79	192	114	84	83	203	128	88	85	187	143	158	169	182	137	135	156
3.98	130	141	76	79	187	86	83	83	199	92	87	86	185	139	152	164	177	129	127	142
4. 31	111	123	75	79	178	82	82	82	190	85	84	85	178	132	143	156	167	124	119	127
4.64	94	87	75	79	185	81	81	82	197	83	84	84	183	136	145	161	172	133	121	99
4.98	86	79	74	78	156	79	81	82	172	81	82	83	163	114	130	140	147	113	113	91
5. 31	84	79	74	78	170	79	81	82	189	81	82	83	177	121	140	152	158	108	120	92
5. 31	84	79	74	78	173	79	81	82	192	82	82	83	179	123	143	155	162	109	120	93
5.64	83	77	74	78	155	79	81	82	180	82	82	83	169	109	135	143	147	90	93	92
5.98	82	76	74	78	145	79	81	82	178	82	82	83	169	97	133	139	141	89	92	91
6. 31	78	75	74	77	124	78	80	82	164	79	80	82	160	74	124	130	106	88	91	89
6.64	80	78	76	80	91	81	82	84	161	81	83	84	160	77	106	103	105	90	93	91
6.98	79	77	76	80	85	80	82	83	143	80	82	83	145	73	96	99	102	88	91	88
7. 31	78	76	75	79	81	79	81	83	115	79	81	83	137	72	96	99	101	87	90	88
7. 31	78	76	75	79	81	79	81	83	118	79	81	83	143	72	96	99	102	87	90	88
7.56	78	76	75	79	79	80	81	83	94	79	81	83	125	72	96	99	101	87	90	88

TABLE II. - Continued. MEASURED WALL TEMPERATURE

Length,		Run																	
ft	188	191	196	197	198	199	200	205	206	207	208	209	212	213	215	216	217	219	220
			<u> </u>	L		l		Т	empe	ratui	re, o	F	<u> </u>		L			1	
0.14	227	196	180	188	188	188	185	202	200	193	193	191	203	204	196	197	196	166	173
. 98	215	183	166	173	176	177	175	191	187	180	181	180	192	195	187	187	186	120	144
1.31	208	175	156	163	167	168	168	185	175	171	173	173	185	189	180	181	180	102	123
1.64	206	171	146	152	159	162	165	181	166	163	167	170	183	187	178	179	179	78	107
1.98	191	166	131	135	146	149	154	169	148	147	152	158	167	172	168	167	169	80	87
2. 31	198	158	117	121	134	140	151	169	133	137	148	159	168	179	170	171	172	75	79
2.64	190	149	95	95	119	124	137	153	114	121	130	147	156	173	162	164	166	75	78
2.98	189	146	87	91	97	109	127	143	90	97	119	138	145	170	157	161	165	75	78
3. 31	182	145	85	87	88	90	107	131	85	90	93	125	132	161	144	151	159	74	75
3. 31	162	133	84	86	87	89	100	118	84	89	91	114	120	144	129	135	143	74	75
3.64	165	141	84	85	87	88	91	98	83	89	90	95	87	142	124	130	143	74	75
3. 98	149	136	86	89	90	93	90	96	83	89	90	92	81	128	92	115	128	1	
4. 31	135	126	83	84	85	86	88	94	81	86	88	90	79	91	81	83	110		
4.64	104	109	83	84	85	86	88	94	81	86	88	90	78	83	79	80	84	1	
4.98	96	99	83	84	85	86	86	91	80	85	86	88	76	78	77	77	78	•	*
5. 31	97	100	83	84	85	86	86	92	80	85	87	88	77	79	77	78	79	74	75
5. 31	99	100		84	85	86	87	93	81	86	87	88	77	79	77	78	79	1	1 +
5.64	95	99		84	85	86	86	91	81	86	87	88	76	78	77	77	78	1	1
5.98	95	99		84	85	86	86	91	81	86	87	88	76	77	77	77	78		
6. 31	92	98	♦	83	86	84	85	90	79	84	85	87	75	76	76	76	77	•	♥
6.64	94	100	84	85	85	86	87	92	83	87	88	89	78	78	79	79	80	75	78
6.98	91	98	83	84	1	86	86	90	81	86	87	88	77	77	77	77	78		
7. 31	91	98	83	83		85	86	90	81	85	86	87	76	77	77	77	77		1 [
7. 31	91	98	83	83		85	86	90	81	85	86	87	76	77	77	77	77		
7. 56	91	98	83	84	\ \	85	86	90	81	85	86	87	76	77	77	77	77	♦	♦

TABLE II. - Concluded. MEASURED WALL TEMPERATURE

Length,		Run																	
ft	221	222	223	224	225	226	227	228	229	233	234	235	236	237	238	239	240	241	243
		<u> </u>		l				Т	empe	ratu	re, ^o	F			L	L	!	l	<u> </u>
0.14	175	178	177	193	190	173	182	191	198	205	205	220	219	218	229	186	216	226	232
.98	151	162	165	181	167	150	168	175	181	193	193	209	207	208	219	161	203	214	220
1.31	133	149	156	171	148	133	157	164	168	187	187	203	200	202	213	145	195	205	21
1.64	114	135	150	164	128	115	145	151	155	184	185	201	197	201	211	129	190	201	20
1.98	100	118	136	150	113	105	129	133	137	171	172	187	184	186	197	109	174	184	19
2. 31	81	106	125	138	89	85	115	121	125	174	177	191	188	193	204	70	179	189	19
2.64	80	84	110	121	86	84	92	95	97	164	169	183	182	187	197	66	171	180	18
2.98	80	83	88	98	86	84	90	93	96	158	167	179	182	187	197	65	171	178	18
3. 31	79	82	85	90	85	83	88	91	92	146	160	170	180	183	191	64	170	174	18
3. 31	78	81	84	89	85	83	87	90	91	131	143	152	162	165	172	63	154	160	16
3.64	78	81	83	88	84	83	87	89	91	128	143	151	166	169	175	63	161	165	16
3.98	1	81	83	88	84	1		90	91	102	132	128	155	156	161	62	154	161	16
4. 31		80	83	87	84			88	90	99	103	110	141	138	143	62	142	154	15
4.64		80	82	87	83			88	90	99	103	109	119	125	116	61	139	158	15
4.98	*	80	82	85	83	♦	*	88	89	96	99	103	106	91	95	61	102	128	12
5. 31	78	80	82	.85	83	83	87	88	89	97	100	105	106	92	96	61	102	150	1:
5. 31	1	1	i .	86	1	1		lı	1	97	100	106	107	93	97	61	102	155	1
5.64				85						96	99	103	106	91	95	61	99	107	1:
5.98				85				1		96	99	103	105	91	95	61	99	105	12
6.31	♦	\ \	♦	84	♦	♦	♦	♦	♦	95	97	102	103	86	91	60	97	101	12
6.64	79	82	84	86	85	85	88	89	91	97	100	104	105	89	92	63	99	103	1:
6.98			83	86	1	85	88		90	95	98	102	102	85	89	62	96	100	1:
7. 31			83	85		84	87		89	95	98	102	102	85	88	62	96	100	10
7. 31			83	85	1	84	87		89	95	98	102	102	85	88	62	96	100	1
7.56	▼	♦	83	85	🔻	84	87	♦	89	95	98	102	102	85	88	62	95	99	10

TABLE III. - INSTABILITY SURVEY DATA SUMMARY

Run	Pressure o	oscillations			eraged				Ratio to
	Frequency,	Amplitude, a	para	meter	point	Amplitude			
	cps		P _{IF} , psia	L _c , ft	tvs,in, o _F	t _k , out, o _F	w _t , lb/hr	w _k /w _t	P _{IF} percent
1	2.7	3. 0	10.5	2.6	221	122	67.4	31.75	28.6
2	2.8	1.6	30.5	2. 7	250	133	55.4	21.48	5.2
3	3.3	5.0	45.3	2. 4	276	164	79.5	14.97	11.0
4	4.7	4.8	38.0	3. 7	268	175	103.0	11.55	12.6
5	3.8	3. 6	22.8	3. 1	238	149	77.3	15.39	15.8
6	3.9	10. 8	22.8	1.7	233	114	54.6	39. 19	47.4
7	3.9	8. 8	42.4	2.8	273	163	90.0	13. 22	20.8
8	4.1	8. 2	15.5	2. 2	222	121	67.0	31.94	52.9
9	4.2	1.6	16.4	3.5	226	142	64.8	18.36	9.8
10	5.3	3. 2	14.5	3. 1	219	133	61.8	23.54	22.1
11	6.0	2.4	20. 2	2. 8	260	141	113.9	18. 79	11.9
12	6.1	16.6	29.7	1.8	260	123	79.3	26.99	55.9
13	7.2	2. 2	20.0	3. 3	232	138	59.2	20. 10	11.0
14	8.8	2. 5	18.8	2.4	224	128	52.9	27.50	13. 2

^aPeak-to-peak amplitude; mean of the two values measured by pressure pickups located 1 and 2 ft from condenser inlet.

915/67

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546